
Object-Oriented
Design
CSCE 740 - Lecture 15 - 10/21/2015

Objectives for Today

● Introduce object-oriented design.
○ Design the system based on interactions

between entities.
● UML Class Diagrams

○ Visualization of the static structure of the
classes and their relationships.

Gregory Gay CSCE 740 - Fall 2015 2

Common Problems

● The requirements are wrong.
○ Incomplete, ambiguous, inconsistent
○ Developer and customer had different

interpretations.
● Requirements drift

○ Requirements tend to change often.
○ Leads to late design changes.

● Continual change
○ Functionality changes often.
○ Many of these changes come late in the project.
○ Many changes during maintenance.

Gregory Gay CSCE 740 - Fall 2015 3

The Solution

● Good: Rigorous requirements and planning
stages.
○ Make sure stakeholders and developers are on the

same page.
● Better: Structure the system to

accommodate change.
○ Isolate parts that are likely to change.
○ Modularize so changes are contained.
○ Attempt to not compromise the system structure

during change.

Gregory Gay CSCE 740 - Fall 2015 4

The Object-Oriented Solution

The problem domain is relatively consistent.
● Creating ID Cards

○ Assemble data based on selected options, place in
correct position on card layout.

● Autopilot System
○ Get the plane from point A to point B using available

control options.
● Word Processor

○ Style text using user-selected options, render the
document as it would appear once printed.

Gregory Gay CSCE 740 - Fall 2015 5

The Object-Oriented Solution

What changes is functionality and data
representation.
● Creating ID Cards

○ Type of information and where it is placed changes.
○ New types of ID may need to be added.

● Autopilot System
○ Hardware interfaces need to adapt to new airplanes.
○ Operation options may evolve over time.

● Word Processor
○ New style options and templates added over time.
○ New document types supported (webpage generation)

Gregory Gay CSCE 740 - Fall 2015 6

The OO Approach:
Structure the system based on the
abstract concepts of the problem
domain, not the concrete
instantiations.

What is OO Design?

OO design is a way of thinking about a problem
based on abstractions of concepts (entities) that
exist in the real world.

OO design is not the same as programming in an
OO language.
● Can reason about entities and relationships

even when programming in C, Fortran, etc.
● OO languages do not ensure OO design.

Gregory Gay CSCE 740 - Fall 2015 8

Viewpoints of OO Analysis

Static Models:
● Describe the structure of the entities in the system.

○ Individual entities (attributes and operations).
○ Relationships between entities (association and

inheritance).
○ Clustering of entities into logical subsystems.

Dynamic (Behavioral) Models:
● Describe sequences of interactions between object

instantiations during execution.
○ Show changes to attributes and sequences of changes.
○ Model the control aspects of the system.

Gregory Gay CSCE 740 - Fall 2015 9

The OO Solution

● The design should be organized as a
collection of objects that model concepts in the
problem domain.
○ Concrete concepts in the real world

■ A driver’s license, an aircraft, a document…
○ Logical concepts

■ A scheduling policy, conflict resolution rules...
● What defines an object:

○ Data representation
■ Characteristics that define an object (attributes).

○ Functionality
■ What the object can do (operations).

Gregory Gay CSCE 740 - Fall 2015 10

Card Entities

You are building a
system that can print
different types of card
(for now - ID, license,
credit cards).
What are some of the
entities that make up this
problem domain?
How do these entities
relate?

Gregory Gay CSCE 740 - Fall 2015 11

Attributes and Operations

Person Objects

Card Objects

abstracts to

Attributes
● Name
● Age
● Height
● Weight
● Address
● Role

Operations
● Edit Information
● Change Role

Attributes
● Owner
● Layout
● ID Number
● Expiration Date

Operations
● Issue
● Edit Information
● Renew
● Retract

Gregory Gay CSCE 740 - Fall 2015 12

Objects vs Classes

● Objects are concrete entities that make sense
in the application domain:
○ Greg Gay
○ Greg’s credit card
○ Greg’s driver's license

● All objects have an identity and are
distinguishable
○ Greg’s credit card vs Jason’s credit card

● Not an object:
○ Person
○ Driver’s License

Gregory Gay CSCE 740 - Fall 2015 13

Classes

● Describes a type of object where each instance has
the same attributes and behaviors, the same
relationships to other classes, and common meaning.

● Objects are instances of classes, where each
object has the same structure and behavior.

● Person instances:
○ Greg Gay, Jason Biatek

● Credit Card instances:
○ Greg’s credit card, Jason’s credit card

Gregory Gay CSCE 740 - Fall 2015 14

Objects Characteristics

● Objects have a
classification.
○ Objects are instances

of classes.
○ Each instance has the

same structure and
behavior.

● Objects have identity.
○ Discrete and

distinguishable entities.

Gregory Gay CSCE 740 - Fall 2015 15

!=

Objects vs Classes

● Classes are used in static views of a domain
or system.
○ When we design the system structure, we don’t care

about Greg. We care about what defines any abstract
Person.

● Objects are used in dynamic views of a
domain or system.
○ Brainstorming, modeling of concrete execution

scenarios.

Gregory Gay CSCE 740 - Fall 2015 16

Inheritance

● We can define child classes that
share attributes and operations
based on a hierarchical
relationship.
○ Allows the creation of

specialized versions of classes
without reimplementing
functionality or including
attributes and operations where
they aren’t needed.

○ All objects of a child are both
instances of that class and of
the parent class.

Gregory Gay CSCE 740 - Fall 2015 17

Card

id-number: integer
height: integer
width: integer

issue()
revoke()

Drivers Licence

class: Vehicle
issued: Date
expires: Date

restrictions: String[]

renew()

ID Card

issued: Date
expires: Date

renew()

Polymorphism

● The same operation may
behave differently when used
on different classes.
○ Specifically, we can redefine

operations in each related
class.

● Because Shape defines an
area() method, we know all
children offer that method.
○ But, we can redefine that

method in each child to offer
the right answer.

Shape

area()

Square

area()

Circle

area()

Triangle

area()

● Because objects are
instances of both their class
and their parent class:
void getArea(Shape s){

System.out.println(s.area());
}

Gives the right answer if a
square, circle, triangle, etc
is passed in.

Gregory Gay CSCE 740 - Fall 2015 18

Class Diagrams
Visualize system structure: classes
and how they relate.

Class Diagrams

Class Diagram:
Used to describe
class with attributes.

Attributes are variables
● That describe the

instantiated object.
● That are used by objects

to perform operations.

Include the datatype, and
(optionally) a symbol to
indicate visibility:
● + (public), - (private),

(protected),
~ (package-level)

Person

+name: String
age: integer
-currentMember: Boolean

Gregory Gay CSCE 740 - Fall 2015 20

Operations

Operations are
transformations that
can be applied to or
performed by an
instance of a class.

Operations may have
arguments.

Card

height: integer
thickness: integer
-id-number: integer

issue()
revoke()

Shape

height: integer
width: integer

rotate(angle: integer)
move(x: integer, y: integer)

Gregory Gay CSCE 740 - Fall 2015 21

Associations

A conceptual connection between classes.
● A credit card is issued by a bank.
● A person works for a company.

Credit Card BankIssued-by

Person CompanyWorks-for

Gregory Gay CSCE 740 - Fall 2015 22

Associations Can Have Direction

Direction on an association indicates control.
Which object possesses and calls on the other?

Associations can be bidirectional.

Person

credit: Card
CardOwns

Person

employer: Company

Company

employees: Person[*]

Works-for

Gregory Gay CSCE 740 - Fall 2015 23

Associations Have Multiplicity

Associations should be labeled with how many instances of
a class are expected on each side.
● One Person owns one Card

● One Person can own zero or more cards

Person

credit: Card
CardOwns1 1

Person

credits: Card[0..*]
CardOwns1 0..*

Gregory Gay CSCE 740 - Fall 2015 24

Multiplicity

Defined with a lower and upper bound.
● One Person can own zero or more Cards.
● Each Card is owned by zero to one Person.

Common terms that imply multiplicity:
● Optional: implies lower bound of 0.
● Mandatory: implies lower bound of 1 or more.
● Single-Valued: implies upper bound of 1.
● Multivalued: implies an upper bound > 1 (often *).

Person

credit: Card
Card

Owns0..1 0..*

Gregory Gay CSCE 740 - Fall 2015 25

Multiple Associations

Can have multiple associations between objects, each with
their own multiplicities.
● One Person can own zero or more Cards.
● Each Card is owned by zero to one Person.
● Each Card has one or more authorized users.
● One Person can be authorized to use zero or more Cards.

Person

credit: Card

Card

authorized: Person[*]

Owns0..1 0..*

Authorizes1..* 0..*

Gregory Gay CSCE 740 - Fall 2015 26

Link Attributes

Associations can have attributes just like classes can have
attributes.
● How do you represent salary and job title?

Person

name: String
age: integer

address: String

Company

name: String
address: String

Works-for0..* 1

salary: integer
job-title: String

Gregory Gay CSCE 740 - Fall 2015 27

Folding Link Attributes into Classes

Person

name: String
age: integer

address: String

Company

name: String
address: String

Works-for0..* 1

salary: integer
job-title: String

Person

name: String
age: integer

address: String
salary: integer
job-title: String

Company

name: String
address: String

Works-for0..* 1

Why not this?

Gregory Gay CSCE 740 - Fall 2015 28

Association Constraints

General Constraints:
On one association or
between multiple. Plain
English. Use dotted line to
show dependency.

Class Students1 0..*

{ordered}

Ordering:
On one association. Implies
that objects on the “many”
side must be ordered.

Account

Owner

Person

Corporation

{xor}

Gregory Gay CSCE 740 - Fall 2015 29

Attribute Constraints

General Constraints: Plain English. Can be
constraints on an attribute or on multiple related
attributes.

BankAccount

owner: string
balance: number

{owner is not empty
and balance >= 0}

CreditCard

number: int

{number is 16 digits}

Gregory Gay CSCE 740 - Fall 2015 30

Role Names

Attach names to the ends of an association to
clarify its meaning.

Person

name: String
age: integer

address: String

Company

name: String
address: String

0..* 1Works-for

employee employer

Gregory Gay CSCE 740 - Fall 2015 31

Higher Order Associations

Associations can be between more than two
classes.

Person

name: String
age: integer

address: String

Company

name: String
address: String

0..* 1

Project

name: String
language: String

1..*

Gregory Gay CSCE 740 - Fall 2015 32

Aggregation

A special type of association. Indicates membership.
● A sentence is part of a paragraph.

○ (A paragraph consists of sentences.)
● A paragraph is part of a document.

○ (A document consists of paragraphs.)

Document Paragraph Sentence

Gregory Gay CSCE 740 - Fall 2015 33

Composition

A stronger type of aggregation.
● Aggregation indicates membership. Member

objects can exist outside of the owner.
● Composition indicates dependence. The

instance is destroyed if its owner is destroyed.

Car Transmission

Wheel

Gregory Gay CSCE 740 - Fall 2015 34

Aggregation vs Association

When should you use a plain association versus an
aggregation?
● Can you use the phrase “is made of”?
● Are operations automatically applied to the parts?
Then use aggregation. If not clear, use association.

Company Division Department

Person

0..* 0..*

0..*

Gregory Gay CSCE 740 - Fall 2015 35

Inheritance

The is-a association.
● Cards have many

properties in common.
● Generalize the common

properties as a base
class.

● Let all card types inherit
the common attributes
and add their own (Drivers
License is-a Card)

Card

id-number: integer
height: integer
width: integer

issue()
revoke()

Drivers Licence

class: Vehicle
issued: Date
expires: Date

renew()

ID Card

issued: Date
expires: Date

renew()

Gregory Gay CSCE 740 - Fall 2015 36

Aggregation Versus Inheritance

● Do not confuse “is-a”
(inheritance) with “is-
part-of” (aggregation).

● Use inheritance for
different special versions
of a general concept.

● Use aggregation to
indicate components of a
whole.

Car

Wheel

Body

Engine

Station
Wagon

Compact

Gregory Gay CSCE 740 - Fall 2015 37

Example

Gregory Gay CSCE 740 - Fall 2015 38

Examples

Draw a class diagram for a
book chapter.
A chapter comprises
several sections, each of
which comprises several
paragraphs and/or figures.
A paragraph comprises
several sentences, each of
which contains several
words.

Draw a class diagram
(using inheritance) that
captures two categories of a
company’s customers:
external customers, which
are other companies buying
goods from this company,
and internal customers,
which are the divisions of
the company.

Gregory Gay CSCE 740 - Fall 2015 39

Suggested Solution 1

Draw a class diagram for a book chapter.
A chapter comprises several sections, each of which
comprises several paragraphs and/or figures. A paragraph
comprises several sentences, each of which contains several
words.

Chapter Section
1 1..*

Component
1 1..*

Paragraph PictureSentence
1..* 1

Word
1..* 1

Gregory Gay CSCE 740 - Fall 2015 40

Suggested Solution 2

Draw a class diagram (using inheritance) that captures two
categories of a company’s customers: external customers,
which are other companies buying goods from this company,
and internal customers, which are the divisions of the
company.

CustomerInternal
Customer

Corporate
Division

Company External
Customer

Gregory Gay CSCE 740 - Fall 2015 41

We Have Learned

● An object is an entity in the problem domain.
● An object is an instantiation of a class (a type

of object).
● Classes have attributes and operations.
● Classes are related through associations:

○ Regular association, aggregation, composition,
inheritance

● Associations have multiplicity and may have
direction.

Gregory Gay CSCE 740 - Fall 2015 42

Next Time

● Coming up with the classes and associations.
● Reading:

○ Sommerville, chapter 7
○ Fowler UML, chapter 5

Gregory Gay CSCE 740 - Fall 2015 43

