
Object-Oriented 
Design
CSCE 740 - Lecture 15 - 10/21/2015



Objectives for Today

● Introduce object-oriented design.
○ Design the system based on interactions 

between entities.
● UML Class Diagrams

○ Visualization of the static structure of the 
classes and their relationships.
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Common Problems

● The requirements are wrong.
○ Incomplete, ambiguous, inconsistent
○ Developer and customer had different 

interpretations.
● Requirements drift

○ Requirements tend to change often.
○ Leads to late design changes.

● Continual change
○ Functionality changes often.
○ Many of these changes come late in the project.
○ Many changes during maintenance.
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The Solution

● Good: Rigorous requirements and planning 
stages.
○ Make sure stakeholders and developers are on the 

same page.
● Better: Structure the system to 

accommodate change.
○ Isolate parts that are likely to change.
○ Modularize so changes are contained.
○ Attempt to not compromise the system structure 

during change.
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The Object-Oriented Solution

The problem domain is relatively consistent.
● Creating ID Cards

○ Assemble data based on selected options, place in 
correct position on card layout.

● Autopilot System
○ Get the plane from point A to point B using available 

control options.
● Word Processor

○ Style text using user-selected options, render the 
document as it would appear once printed.
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The Object-Oriented Solution

What changes is functionality and data 
representation.
● Creating ID Cards

○ Type of information and where it is placed changes. 
○ New types of ID may need to be added.

● Autopilot System
○ Hardware interfaces need to adapt to new airplanes.
○ Operation options may evolve over time.

● Word Processor
○ New style options and templates added over time. 
○ New document types supported (webpage generation)
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The OO Approach:
Structure the system based on the 
abstract concepts of the problem 
domain, not the concrete 
instantiations.



What is OO Design?

OO design is a way of thinking about a problem 
based on abstractions of concepts (entities) that 
exist in the real world.

OO design is not the same as programming in an 
OO language.
● Can reason about entities and relationships 

even when programming in C, Fortran, etc.
● OO languages do not ensure OO design.
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Viewpoints of OO Analysis

Static Models:
● Describe the structure of the entities in the system.

○ Individual entities (attributes and operations).
○ Relationships between entities (association and 

inheritance).
○ Clustering of entities into logical subsystems.

Dynamic (Behavioral) Models:
● Describe sequences of interactions between object 

instantiations during execution.
○ Show changes to attributes and sequences of changes.
○ Model the control aspects of the system.

Gregory Gay CSCE 740 - Fall 2015 9



The OO Solution

● The design should be organized as a 
collection of objects that model concepts in the 
problem domain.
○ Concrete concepts in the real world

■ A driver’s license, an aircraft, a document…
○ Logical concepts

■ A scheduling policy, conflict resolution rules...
● What defines an object:

○ Data representation
■ Characteristics that define an object (attributes).

○ Functionality
■ What the object can do (operations).
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Card Entities

You are building a 
system that can print 
different types of card 
(for now - ID, license, 
credit cards).
What are some of the 
entities that make up this 
problem domain?
How do these entities 
relate?
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Attributes and Operations

Person Objects

Card Objects

abstracts to

Attributes
● Name
● Age
● Height
● Weight
● Address
● Role

Operations
● Edit Information
● Change Role

Attributes
● Owner
● Layout
● ID Number
● Expiration Date

Operations
● Issue
● Edit Information
● Renew
● Retract
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Objects vs Classes

● Objects are concrete entities that make sense 
in the application domain:
○ Greg Gay
○ Greg’s credit card
○ Greg’s driver's license

● All objects have an identity and are 
distinguishable
○ Greg’s credit card vs Jason’s credit card

● Not an object:
○ Person
○ Driver’s License
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Classes

● Describes a type of object where each instance has 
the same attributes and behaviors, the same 
relationships to other classes, and common meaning.

● Objects are instances of classes, where each 
object has the same structure and behavior.

● Person instances:
○ Greg Gay, Jason Biatek

● Credit Card instances:
○ Greg’s credit card, Jason’s credit card
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Objects Characteristics

● Objects have a 
classification.
○ Objects are instances 

of classes.
○ Each instance has the 

same structure and 
behavior.

● Objects have identity.
○ Discrete and 

distinguishable entities.
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Objects vs Classes

● Classes are used in static views of a domain 
or system.
○ When we design the system structure, we don’t care 

about Greg. We care about what defines any abstract 
Person.

● Objects are used in dynamic views of a 
domain or system.
○ Brainstorming, modeling of concrete execution 

scenarios.
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Inheritance

● We can define child classes that 
share attributes and operations 
based on a hierarchical 
relationship.
○ Allows the creation of 

specialized versions of classes 
without reimplementing 
functionality or including 
attributes and operations where 
they aren’t needed.

○ All objects of a child are both 
instances of that class and of 
the parent class.
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Card

id-number: integer
height: integer
width: integer

issue()
revoke()

Drivers Licence

class: Vehicle
issued: Date
expires: Date

restrictions: String[]

renew()

ID Card

issued: Date
expires: Date

renew()



Polymorphism

● The same operation may 
behave differently when used 
on different classes.
○ Specifically, we can redefine 

operations in each related 
class.

● Because Shape defines an 
area() method, we know all 
children offer that method. 
○ But, we can redefine that 

method in each child to offer 
the right answer.

Shape

area()

Square

area()

Circle

area()

Triangle

area()

● Because objects are 
instances of both their class 
and their parent class:
void getArea(Shape s){

System.out.println(s.area());
}

Gives the right answer if a 
square, circle, triangle, etc 
is passed in.
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Class Diagrams
Visualize system structure: classes 
and how they relate.



Class Diagrams

Class Diagram:
Used to describe 
class with attributes.

Attributes are variables 
● That describe the 

instantiated object.
● That are used by objects 

to perform operations.

Include the datatype, and 
(optionally) a symbol to 
indicate visibility:
● + (public), - (private), 

# (protected), 
~ (package-level)

Person

+name: String
age: integer
-currentMember: Boolean
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Operations

Operations are 
transformations that 
can be applied to or 
performed by an 
instance of a class.

Operations may have 
arguments.

Card

height: integer
thickness: integer
-id-number: integer

issue()
revoke()

Shape

height: integer
width: integer

rotate(angle: integer)
move(x: integer, y: integer)
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Associations

A conceptual connection between classes.
● A credit card is issued by a bank.
● A person works for a company.

Credit Card BankIssued-by

Person CompanyWorks-for
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Associations Can Have Direction

Direction on an association indicates control. 
Which object possesses and calls on the other?

Associations can be bidirectional.

Person

credit: Card
CardOwns

Person

employer: Company

Company

employees: Person[*]

Works-for

Gregory Gay CSCE 740 - Fall 2015 23



Associations Have Multiplicity

Associations should be labeled with how many instances of 
a class are expected on each side.
● One Person owns one Card

● One Person can own zero or more cards

Person

credit: Card
CardOwns1 1

Person

credits: Card[0..*]
CardOwns1 0..*
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Multiplicity

Defined with a lower and upper bound.
● One Person can own zero or more Cards.
● Each Card is owned by zero to one Person.

Common terms that imply multiplicity:
● Optional: implies lower bound of 0.
● Mandatory: implies lower bound of 1 or more.
● Single-Valued: implies upper bound of 1.
● Multivalued: implies an upper bound > 1 (often *).

Person

credit: Card
Card

Owns0..1 0..*
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Multiple Associations

Can have multiple associations between objects, each with 
their own multiplicities.
● One Person can own zero or more Cards.
● Each Card is owned by zero to one Person.
● Each Card has one or more authorized users.
● One Person can be authorized to use zero or more Cards.

Person

credit: Card

Card

authorized: Person[*]

Owns0..1 0..*

Authorizes1..* 0..*
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Link Attributes

Associations can have attributes just like classes can have 
attributes.
● How do you represent salary and job title?

Person

name: String
age: integer

address: String

Company

name: String
address: String

Works-for0..* 1

salary: integer
job-title: String
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Folding Link Attributes into Classes

Person

name: String
age: integer

address: String

Company

name: String
address: String

Works-for0..* 1

salary: integer
job-title: String

Person

name: String
age: integer

address: String
salary: integer
job-title: String

Company

name: String
address: String

Works-for0..* 1

Why not this?
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Association Constraints

General Constraints: 
On one association or 
between multiple. Plain 
English. Use dotted line to 
show dependency.

Class Students1                          0..*

{ordered}

Ordering: 
On one association. Implies 
that objects on the “many” 
side must be ordered.

Account

Owner

Person

Corporation

{xor}
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Attribute Constraints

General Constraints: Plain English. Can be 
constraints on an attribute or on multiple related 
attributes.

BankAccount

owner: string
balance: number

{owner is not empty 
and balance >= 0}

CreditCard

number: int

{number is 16 digits}
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Role Names

Attach names to the ends of an association to 
clarify its meaning.

Person

name: String
age: integer

address: String

Company

name: String
address: String

0..* 1Works-for

employee employer
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Higher Order Associations

Associations can be between more than two 
classes.

Person

name: String
age: integer

address: String

Company

name: String
address: String

0..* 1

Project

name: String
language: String

1..*
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Aggregation

A special type of association. Indicates membership.
● A sentence is part of a paragraph. 

○ (A paragraph consists of sentences.)
● A paragraph is part of a document.

○ (A document consists of paragraphs.)

Document Paragraph Sentence
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Composition

A stronger type of aggregation. 
● Aggregation indicates membership. Member 

objects can exist outside of the owner.
● Composition indicates dependence. The 

instance is destroyed if its owner is destroyed.

Car Transmission

Wheel
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Aggregation vs Association

When should you use a plain association versus an 
aggregation?
● Can you use the phrase “is made of”? 
● Are operations automatically applied to the parts? 
Then use aggregation. If not clear, use association.

Company Division Department

Person

0..* 0..*

0..*
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Inheritance

The is-a association.
● Cards have many 

properties in common.
● Generalize the common 

properties as a base 
class.

● Let all card types inherit 
the common attributes 
and add their own (Drivers 
License is-a Card)

Card

id-number: integer
height: integer
width: integer

issue()
revoke()

Drivers Licence

class: Vehicle
issued: Date
expires: Date

renew()

ID Card

issued: Date
expires: Date

renew()
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Aggregation Versus Inheritance

● Do not confuse “is-a” 
(inheritance) with “is-
part-of” (aggregation).

● Use inheritance for 
different special versions 
of a general concept.

● Use aggregation to 
indicate components of a 
whole. 

Car

Wheel

Body

Engine

Station 
Wagon

Compact
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Example
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Examples

Draw a class diagram for a 
book chapter. 
A chapter comprises 
several sections, each of 
which comprises several 
paragraphs and/or figures. 
A paragraph comprises 
several sentences, each of 
which contains several 
words.

Draw a class diagram 
(using inheritance) that 
captures two categories of a 
company’s customers: 
external customers, which 
are other companies buying 
goods from this company, 
and internal customers, 
which are the divisions of 
the company. 
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Suggested Solution 1

Draw a class diagram for a book chapter. 
A chapter comprises several sections, each of which 
comprises several paragraphs and/or figures. A paragraph 
comprises several sentences, each of which contains several 
words.

Chapter Section
1 1..*

Component
1 1..*

Paragraph PictureSentence
1..* 1

Word
1..* 1
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Suggested Solution 2

Draw a class diagram (using inheritance) that captures two 
categories of a company’s customers: external customers, 
which are other companies buying goods from this company, 
and internal customers, which are the divisions of the 
company. 

CustomerInternal 
Customer

Corporate 
Division

Company External 
Customer
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We Have Learned

● An object is an entity in the problem domain.
● An object is an instantiation of a class (a type 

of object).
● Classes have attributes and operations.
● Classes are related through associations:

○ Regular association, aggregation, composition, 
inheritance

● Associations have multiplicity and may have 
direction.

Gregory Gay CSCE 740 - Fall 2015 42



Next Time

● Coming up with the classes and associations.
● Reading:

○ Sommerville, chapter 7
○ Fowler UML, chapter 5
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