
Dynamic Modeling
CSCE 740 - Lecture 19 - 11/04/2015

Class Diagram

Gregory Gay CSCE 740 - Fall 2015 2

Overview

● Static models describe the structure of the
classes (attributes, operations) and their
relationships.

● Dynamic models describe how objects interact
and change state, including the ordering of
interactions.

● Today, we will discuss using sequence
diagrams to examine dynamic behavior.

Gregory Gay CSCE 740 - Fall 2015 3

Why Model Dynamic Behavior?

● Static models tells us that
Rooms request heat from a
Furnace.
○ But not when
○ Or how
○ Or how often

● … and that a Furnace can
 start a Water Pump
○ But not under what

circumstances
● Dynamic models add context.

Gregory Gay CSCE 740 - Fall 2015 4

Start With The Use-Cases

● Use-cases describe
functions the
system can
accomplish.

● Functions can be
decomposed into
series of actions
performed
internally by system
classes.

Gregory Gay CSCE 740 - Fall 2015 5

Sequence Diagrams

● Capture how the
system fulfills a use
case.
○ Sequence of

interactions between
objects within the
system.

● Highlight the order
and sequencing of
interactions.

ord1: Order items: Catalog

calculatePrice

calculatePrice

Gregory Gay CSCE 740 - Fall 2015 6

Sequence Diagram Syntax
ord1: Order items: Catalog

lookup(item)

● Naming: name : Class or,
informally, “A Class”.

● Lifeline: dashed line indicates
life of the object.

● Found Message: Commands
from an unmodeled source.

● Activation Box: A method is
being executed.

● Message: One object calls a
method offered by another
object.

price

● Return: Information that the
object returns to the calling
object.

calculatePrice

Gregory Gay CSCE 740 - Fall 2015 7

Sequence Diagram Syntax (2)
ord1: Order ● Actors: external

users/systems can be
modeled as objects

● New: When an object is
created, a “new” message
should point to the box
naming the new object.

● Self-Call: Objects can call
their own methods.

items: Catalog
new

A Customer

calculatePrice

totalPrice

● Close: When an object is
destroyed, end its lifeline with
an X.

close

sumPrices

Gregory Gay CSCE 740 - Fall 2015 8

Ordering Example
ord1: Order line: OrderLine

priceLine()

price

calculatePrice

item: Product user: Customer

getPrice(quantity)

price

getDiscountedValue(ord1)

discounted total

getCurrentTotal

current total

Gregory Gay CSCE 740 - Fall 2015 9

Conditional Behavior

When capturing complex scenarios, you will commonly
encounter conditional behavior:
● The user does something, if this is X, do this… If Y, do

this… If Z, do something else…
● For each item, do this...

Use “frames” to highlight branches in the diagram.

Gregory Gay CSCE 740 - Fall 2015 10

Loops and Conditions

ord1: Order careful:
Distributor

dispatch

regular:
Distributos

emails:
Messenger

loop [for each line item]

procedure dispatch
 foreach(line item)
 if (item.value > 10000)
 careful.dispatch
 else
 regular.dispatch

 if (needsConfirmation)
 emails.confirm

alt [value > 10000]

[else]

dispatch

dispatch

opt [needsConfirmation]

confirm

Gregory Gay CSCE 740 - Fall 2015 11

Frame Operators

● alt: Alternative paths, only one of which will execute.
● opt: Optional set of interactions.
● loop: Set of interactions may execute multiple times.
● par: Each indicated set of interactions will execute in

parallel.
● region: Critical region, only one thread can execute

this interaction sequence at once.
● neg: This set of interactions can never legally

happen.
● ref: Used to refer to a set of interactions depicted on

another diagram.

Gregory Gay CSCE 740 - Fall 2015 12

Online Bookstore Example

Gregory Gay CSCE 740 - Fall 2015 13

store:
BookstoreA Customer

Home Heating Use Case

Use Case: Power Up
Actors: Home Owner
Description:
1. The Home Owner moves the power switch to

the “on” position.
2. The system responds with a “system ready”

status message if it starts successfully.

Gregory Gay CSCE 740 - Fall 2015 14

Class Diagram - v1
Use Case: Power Up
Actors: Home Owner
1. The Home Owner moves the power

switch to the “on” position.
2. The system responds with a “system

ready” status message if it starts
successfully.

Related Requirement:
An operator class processes input
signals. When the power is turned on,
each room is temperature checked. If a
room is below the desired temperature,
the valve for the room is opened, the
water pump started, the fuel valve
opened, and the burner ignited.

Gregory Gay CSCE 740 - Fall 2015 15

Sequence Diagram - v1
switch: On-Off
Switch con: Controller

power on

: Room pump: Water
Pump

get temperature

temperature

An Owner

[for all rooms]

fv: Fuel
Valve

bur:
Burner

opt [tempStatus==low]

loop

pump on

open valve

start burner

Gregory Gay CSCE 740 - Fall 2015 16

ioProc:
Operator

turn
on

activate

statusresult
message

Class Diagram - v2
Use Case: Power Up
Actors: Home Owner
1. The Home Owner moves the power

switch to the “on” position.
2. The system responds with a

“system ready” status message if it
starts successfully.

Related Requirement:
An operator class processes input
signals. When the power is turned on,
each room is temperature checked. If a
room is below the desired temperature,
the valve for the room is opened, the
water pump started, the fuel valve
opened, and the burner ignited.

Gregory Gay CSCE 740 - Fall 2015 17

Sequence Diagram - v2
switch: Power
Switch

cp: Control
Panel

power on

: Room
pump:
Water
Pump

notify

[for all rooms]

fv: Fuel
Valve

bur:
Burner

opt

loop

pump
on

open valve

start burner

check temp

furn:
Furnace

[tempStatus==low]

request heat

Gregory Gay CSCE 740 - Fall 2015 18

An Owner

ioProc:
Operator

turn
on

result
message

activate

status

Example - Poker Hand

Starting a New Game Round
● The scenario begins when a request for a new round is sent to the UI.
● All players' hands are emptied into the deck, which is then shuffled.
● The player left of the dealer supplies an ante bet of the proper amount.
● Next each player is dealt a hand of two cards from the deck in a round-robin

fashion; one card to each player, then the second card.
● If the player left of the dealer doesn't have enough money to ante, he/she is

removed from the game, and the next player supplies the ante.
● If that player also cannot afford the ante, this cycle continues until such a

player is found or all players are removed.

Gregory Gay CSCE 740 - Fall 2015 19

Example - Poker Hand

Gregory Gay CSCE 740 - Fall 2015 20

interface: UI

newRound()

table: Table : Player cards: Deck

newGame()

leftmost:
Player

loop [for all players] emptyHand()
addCards()

shuffle()

loop [players remain and leftmost cannot ante]

removePlayer
(leftmost)

Example - Poker Hand

Gregory Gay CSCE 740 - Fall 2015 21

interface: UI table: Table : Player cards: Deck leftmost:
Player

alt
[players
remain]

ante()

bet

loop [for each
player, twice] drawCard()

getCard()

a card

[else]

endGame()

Facebook Web User Authentication

Gregory Gay CSCE 740 - Fall 2015 22

A User

browser:
WebBrowser

app:
Application

fbAuth:
Authorization
Server

fbContent:
ContentSer
ver

Sequence Diagram Activity
A local television station opens a
communication link to the SatComms
module, identifies itself, and requests
a link to the WeatherStation instance
for a particular location. It then
requests a weather report from the
WeatherStation. The WeatherStation
requests a summary from that
location’s WeatherData instance. If
new readings have not been take in
the last five minutes, then the
WeatherData will gather new values
for its attributes. WeatherData will
then return its summary.
Draw a sequence diagram for this
scenario using these classes.

WeatherStation

identifier

testLink()
reportWeather()
reportStatus()
restart(instruments)
shutdown(instruments)
reconfigure(commands)

WeatherData

temperature
windSpeed
windDirection
pressure
lastReadingTime

collect()
summarize(time)

Thermometer

ther_identifier
temperature

get()
shutdown()
restart()

Anemometer

an_identifier
windSpeed
windDirection

get()
shutdown()
restart()

Barometer

bar_identifier
pressure

get()
shutdown()
restart()

SatComms

linkedStation
stationList[]

openLink(identifier)
closeLink(identifier)
identify(userID)
requestReport()

Gregory Gay CSCE 740 - Fall 2015 23

Activity Solution
comms:
SatComms

s1: Weather
Station

wD:
WeatherData

identify(userID)

requestReport()

openLink
(location) testLink()

acknowledgement

report

report

reportWeather()

report

summarize(time)

ther:
Thermometer

bar:
Barometer

an:
Anemometer

opt [time - lastReading > 5 minutes]
collect()

get(temperature)
get(pressure)

get(speed)

Gregory Gay CSCE 740 - Fall 2015 24

A TV Station

When to Use Sequence Diagrams

Use sequence diagrams when you want to look
at the interaction between objects during a single
use-case of the system.
● Diagrams show what information is passed

between objects…
● and, more importantly, in what order.
● Allows for concurrency, process creation, and

process destruction.
● Clarity is the goal - use comments.

Gregory Gay CSCE 740 - Fall 2015 25

Why Not Just Code It?

Sequence diagrams can be close to the code
level, so why not take the class diagram and start
coding it?
● A sequence of steps != code for those steps.
● Sequence diagrams are language-agnostic.
● Non-coders can still draw sequence diagrams.
● Easier to come up with sequence diagrams as

a team.
● Can see many objects/classes at a time on

same page.
Gregory Gay CSCE 740 - Fall 2015 26

We Have Learned

● Dynamic modeling allows us to design how the
system acts during execution.
○ Sequence diagrams allow modeling of detailed object

interactions.
● These provide context to the static structural

diagrams.

Gregory Gay CSCE 740 - Fall 2015 27

Next Time

● Testing Fundamentals.
● Reading:

○ Sommerville, ch. 8
● Homework due Friday.

○ Any questions?

Gregory Gay CSCE 740 - Fall 2015 28

backup slides

Modeling Dynamic Behavior

Several model formats used to examine dynamic
behavior, at differing levels of detail:
● Use Case Diagrams

○ Externally visible behavior of system.
● Activity Diagrams

○ Flow of events during execution.
● Sequence Diagrams

○ Interactions between objects.
● State Diagrams

○ Detailed behavior of a single object.

Low Detail

High Detail

Gregory Gay CSCE 740 - Fall 2015 5

Activity Diagrams

Show how system and
user actions are
connected together:
● Shows order of

processing.
● Captures parallelism.

Allows analysis of:
● Processing
● Synchronization
● Conditional selection of

activities

Fill Order Send
Invoice

Overnight
Deliery

Regular
Delivery

Receive
Payment

Close
Order

[priority order] [else]

Receive
Order

Gregory Gay CSCE 740 - Fall 2015 7

Activity Diagram Syntax

Fill Order Send
Invoice

Overnight
Deliery

Regular
Delivery

Receive
Payment

Close
Order

● Initial Node: Where
execution begins.

● Action: Something that the
system does.

● Fork: Split into concurrent
activities.[priority

order]
[else] ● Join: Combine event flow

back into one stream.
● Decision: Perform different

activities based on result.
● Merge: Resume execution

after a decision split.

Receive
Order

Gregory Gay CSCE 740 - Fall 2015 8

Gregory Gay CSCE 740 - Fall 2015 9

Drink Dispenser Example

Dispense
Drink

HACS Example

Use Case: Distribute
Assignments
Actors: Instructor, Student
Description: The Instructor
completes an assignment and
submits it to the system. The
Instructor will also submit the delivery
date, due date, and the class the
assignment is assigned for. The
system will, at the due date, mail the
assignment to the student.

Gregory Gay CSCE 740 - Fall 2015 10

HACS Example

Gregory Gay CSCE 740 - Fall 2015 11

Subactivities

Describe complex
actions using
subactivity diagrams.

Gregory Gay CSCI 5801 - Spring 2015 12

Fill Order Send
Invoice

Receive
Payment

Close
Order

Receive
Order

Deliver
Order

Deliver Order

Order Order

Overnight
Deliery

Regular
Delivery

[priority order]

[else]

Partitions

Divide diagram
into actions
performed by one
entity (object or
subsystem)
or actor.

Fill Order Send
Invoice

Overnight
Deliery

Regular
Delivery

Receive
Payment

Close
Order

[priority order] [else]

Receive
Order

Shipping BillingOrder
Controller

Gregory Gay CSCE 740 - Fall 2015 13

HACS Partitions Example

Gregory Gay CSCE 740 - Fall 2015 14

Problems with Activity Diagrams

● They are glorified flowcharts.
○ Very easy to make a traditional data-flow oriented

design, but not well-suited to OO design.
● Hard to isolate behavior of a single object.

○ Do not show how objects collaborate to perform an
action.

○ Do not show how individual objects behave over time.
● However...

○ They can be very powerful when you know how to use
them correctly.

Gregory Gay CSCE 740 - Fall 2015 15

When to use Activity Diagrams

Useful when:
● Analyzing a use case (or collection of use

cases).
○ Great stepping stone from use cases to dynamic

design models.
● Understanding flow of information or control

through a system.
● Working with parallel applications.

Gregory Gay CSCE 740 - Fall 2015 16

Preparing for Implementation

Choosing Data Structures

Design documents detail what is being stored,
but not how to store it.

Choice of data structure matters:
● Storage and operation costs
● Suitability to problem (and what data is being

stored)
● Many guidelines out there - key is to think

through the problem and your priorities
(ease-of-use vs efficiency)

Gregory Gay CSCE 740 - Fall 2015 29

Choosing Algorithms

Design gives you what a method should do,
implementation concerns how to code it to do
that.

Many ways to solve a problem, think carefully
about choice.
● Good design may suggest certain

realization.
● Be prepared to trade efficiency for

maintainability or understandability.
Gregory Gay CSCE 740 - Fall 2015 30

Error-Prone Constructs

Should NOT always be avoided, but must be
used with great care.

● Floating-point numbers
○ Inherently imprecise. The imprecision may lead to

invalid comparisons.
● Pointers

○ Pointers referring to the wrong memory areas can
corrupt data.

○ Aliasing can make programs difficult to understand
and change.

Gregory Gay CSCE 740 - Fall 2015 31

Error-Prone Constructs

● Dynamic memory allocation
○ Run-time allocation can cause memory overflow and

garbage collection issues.
● Parallelism

○ Can result in subtle timing errors because of
unforeseen interaction between parallel processes.

● Recursion
○ Errors in recursion can cause memory overflow.

● Interrupts
○ Can cause a critical operation to be terminated and

make a program difficult to understand.
Gregory Gay CSCE 740 - Fall 2015 32

Code Reuse

Most modern software is constructed, in part,
by reusing existing components or systems.
● When developing software, consider how to

make use of existing code.
● Possible at many levels of development.
● Be careful - many problems and costs

associated with reuse.

Gregory Gay CSCE 740 - Fall 2015 33

Code Reuse Levels

1. Abstraction Level
Use knowledge from similar projects in your system design
(design/architectural patterns)

2. Object Level
Import individual objects and functions from libraries and use
them in your project.

3. Component Level
Incorporate collections of objects and adapt them to your
needs.

4. System Level
Reuse complete applications, wired together with scripting
code.

Gregory Gay CSCE 740 - Fall 2015 34

Costs of Code Reuse

● The time spent looking for software to reuse
and addressing whether it fits your needs can
be high.

● Buying and licensing software for reuse can be
expensive.

● Cost of adapting and configuring the reusable
components to fit your requirements can be
more expensive than coding yourself.

● Integrating reused systems with each other and
with your new code can result in new defects.

Gregory Gay CSCE 740 - Fall 2015 35

Host-Target Development

Most software is developed on one type of
computer (the host) and deployed on different
types of computers (targets).
● For embedded systems, the target is very

different from the host.
● For desktop applications, still need to

consider a wide variety of target
environments.

Gregory Gay CSCE 740 - Fall 2015 36

Target Support Issues

● The hardware and software requirements of a
component.
○ If a component is designed for a specific hardware

architecture, requires certain CPU/RAM/GPU, or requires
special software, then make sure those assumptions are
clearly stated.

● The availability requirements of the system.
○ Components may be deployed on multiple platforms.

Make sure an alternative implementation of the
component is available if one fails.

● Component Communications
○ If distributed components must communicate, try to install

them on a single system or ensure geographically close
servers exist.

Gregory Gay CSCE 740 - Fall 2015 37

Managing Change

Change happens all the time, so managing
change is essential.
● When teams work together, their work must

not conflict.
○ Changes must be coordinated. Otherwise, one

programmer may overwrite the other’s work.
○ Everybody must have access to the most up-to-date

versions of all project components.
● If something is broken, we should be able to

go back to the working version.

Gregory Gay CSCE 740 - Fall 2015 38

Configuration Management

The process of managing a changing system.
Three fundamental activities:
1. Version Management

Different versions of system components are tracked.
Coordinates development by several programmers. Prevents
overwriting of code.

2. System Integration
Support is provided to help developers define what versions
of a component are used to create a system build. Supports
automated builds by linking components.

3. Problem Tracking
Allow users to report bugs and other problems, and allow
developers to see who is working on these problems.

Gregory Gay CSCE 740 - Fall 2015 39

