
Software Evolution
and (Re)engineering
CSCE 740 - Lecture 25 - 11/30/2015

We Will Cover

● We have written, rewritten, and obsessed over
the requirements, design, and code.

● We have tested this software until it cried.
● Now what?

○ Maintenance, evolution, and what the %$#& you do
with bad legacy code.

Gregory Gay CSCE 740 - Fall 2015 2

The Software Lifecycle

Gregory Gay CSCE 740 - Fall 2015 3

Concept
Formation

Requirements
Specification

Design

Implementation
and Testing

Release and
Maintenance

The Real Lifecycle

Specification Implementation

Verification &
ValidationOperation

R1R2R3R4

Initial
Development

Evolution

Servicing

Phaseout

Gregory Gay CSCE 740 - Fall 2015 4

Software Maintenance

● Fault Repairs
○ Changes made in order to correct coding, design, or

requirements errors.

● Environmental Adaptations
○ Changes made to accommodate changes to the

hardware, OS platform, or external systems.

● Functionality Addition
○ New features are added to the system to meet new

user requirements.

Gregory Gay CSCE 740 - Fall 2015 5

Software Maintenance Effort

● Maintenance costs more than the initial
development.
○ 2/3rds of budget goes to maintenance on average.

○ Up to four times the development cost to maintain
critical systems.

● General breakdown:
○ 65% of effort goes to functionality addition
○ 18% to environmental adaptation
○ 17% to fault repair

Gregory Gay CSCE 740 - Fall 2015 6

Maintenance is Hard

It is harder to maintain than to write new code.
● Must understand code written by another

developer, or code that you wrote long ago.
● Creates a “house of cards” effect.
● Developers tend to prioritize new

development.

Smooth maintenance requires planning and
design that supports maintainability.

Gregory Gay CSCE 740 - Fall 2015 7

The Laws of Software Evolution

● Maintenance is an inevitable process.
○ Requirements change as the environment changes.
○ Changing the software causes environmental changes,

which leads to more requirement changes.

● As the system changes, its structure
degrades.
○ When changes are made, the structure becomes more

complex.
○ To prevent this, resources must go into preventative

maintenance - refactoring to preserve and simplify the
structure without adding to functionality.

Gregory Gay CSCE 740 - Fall 2015 8

The Laws of Software Evolution

● The amount of change in each release is
approximately constant.
○ The more functionality introduced, the more faults.

○ A large functionality patch tends to be followed by a

patch that fixes faults without adding additional

functionality. Small functionality changes do not require
a fault-correcting patch.

● Functionality must continually increase to
maintain user satisfaction.

Gregory Gay CSCE 740 - Fall 2015 9

The Laws of Software Evolution

● The quality of the system will decline unless
updated to work with the changing
environment.

● To improve quality, evolution must be treated
as a feedback system.
○ Stakeholders must be continually involved in evolution,

and changes should be influenced by their needs.

Gregory Gay CSCE 740 - Fall 2015 10

Preventative Maintenance

Partially adapted from Marty Stepp
http://www.cs.washington.edu/403/

Refactoring

● Refactoring is the process of altering the code
or revising the design to improve its structure,
reduce complexity, or otherwise accommodate
change.

● When refactoring, you do not add functionality.
● Continuous process of improvement

throughout the evolution of the system.

Gregory Gay CSCE 740 - Fall 2015 12

Why Refactor?

Why fix what isn’t broken?
● Components have three purposes:

○ To perform a service.
○ To allow change.
○ To be understood by developers reading it.

● If the component does not do any of these, it is “broken”.
● Refactoring enables change and improves

understandability.

Gregory Gay CSCE 740 - Fall 2015 13

Refactoring is an Iterative Process

● Refactoring should take place as an iterative
cycle of small transformations.
○ Choose a small part of the system, redesign it, and

make sure it still works.
○ Choose a new section of the system and refactor it.

● Refactoring requires unit tests.
○ Make sure the code works before and after refactoring.

Gregory Gay CSCE 740 - Fall 2015 14

Choosing What to Refactor

● Refactor any piece of the system that:
○ Seems to work,
○ But isn’t well designed,
○ And now needs new functionality.

● There are stereotypical situations that indicate
the need for refactoring.
○ These are called “bad smells”.

Gregory Gay CSCE 740 - Fall 2015 15

Code Smells
● Code is duplicated in multiple places.
● A method is too long.
● Conditional statements control behavior based on an

object type.
● Groups of data attributes are duplicated.
● A class has poor cohesion or high coupling.
● A method has too many parameters.
● Speculative generality - adding functionality that “we

might need someday.”

Gregory Gay CSCE 740 - Fall 2015 16

More Code Smells
● Changes must be made in several places.
● Poor encapsulation of data that should be private.
● If a weak subclass does not use inherited functionality.
● If a class contains unused code.
● If a class contains potentially unused attributes that are

only set in particular circumstances.
● There are data classes containing only attributes, getters,

and setters, but nothing else - objects should
encapsulate data and behaviors.
○ Unless that data is used by multiple classes.

Gregory Gay CSCE 740 - Fall 2015 17

Common Refactorings
(more at http://www.refactoring.com)
Composing Methods

● Extract Method
● Inline Method; Inline Temp
● Introduce Explaining Variable
● Split Temporary Variable
● Remove Assignments to Parameters
● Substitute Algorithm

Moving Features Between Objects

● Move Method; Move Field
● Extract Class
● Inline Class
● Hide Delegate
● Remove Middleman
● Introduce Foreign Method

Organizing Data

● Replace Data Value with Object
● Change Value to Reference; Change Reference to Value
● Replace Array with Object
● Duplicate Observed Data
● Change Unidirectional Association to Bidirectional
● Change Bidirectional Association to to Unidirectional

Simplifying Conditional Expressions

● Decompose Conditional
● Consolidate Conditional Expression
● Consolidate Duplicate Conditional Fragments
● Replace Conditional with Polymorphism
● Introduce Null Object
● Introduce Assertion

Making Method Calls Simpler

● Rename Method
● Add/Remove Parameter
● Separate Query from Modifier
● Parameterize Method
● Replace Parameter with Explicit Methods
● Preserve Whole Object
● Replace Parameter with Method
● Introduce Parameter Object
● Remove Setting Method
● Hide Method
● Replace Constructor with Factory Method
● Encapsulate Downcast
● Replace Error Code with Exception
● Replace Exception with Test

Dealing with Generalization

● Pull Up Field; Method; Constructor Body
● Push Down Method; Push Down Field
● Extract Subclass; Extract Superclass; Interface
● Collapse Hierarchy
● Form Template Method
● Replace Inheritance with Delegation (or vice versa)

Big Refactorings

● Nature of the Game
● Tease Apart Inheritance
● Convert Procedural Design to Objects
● Separate Domain from Presentation
● Extract Hierarchy

Gregory Gay CSCE 740 - Fall 2015 18

http://www.refactoring.com

Refactorings - Composing Methods
● If you have a complex code fragment that can exist

independently, extract it into its own method.
● If you have a method that is extremely simple, inline it into

locations where it is used.
● If you assign values to a temporary variable more than

once, split it into additional temporary variables.
● If assignments are made to parameter variables in a

method, instead assign to a temporary variable.
● If an algorithm is hard to understand, swap it for a

version that is clearer.

Gregory Gay CSCE 740 - Fall 2015 19

Refactorings - Moving Features
Between Objects

● If a method or field is used more by a calling class than
the class it is placed in, move it.

● If a class is doing more work than it should (or has low
cohesion), extract a subset of related methods into a new
class.

● If a class is doing too little, combine it into another class.
● If a class delegates too many calls to a middleman class,

get rid of the middleman and call the client directly.
● If an imported class needs an additional method, but you

can’t modify it directly, create a method in the client
class with the imported object as a parameter.

Gregory Gay CSCE 740 - Fall 2015 20

Refactorings - Conditional
Expressions & Data

● If your conditional statements are too complex, extract
methods from the if, then, and else conditions.

● If you have a sequence of conditional tests with the same
result or repeated conditions in each branch, consolidate
them into fewer conditional statements.

● If you have conditional statements to choose behavior
based on object type, instead use polymorphism.

● If you have an attribute that needs additional data or
operations, turn it into a new type of data object.

● If certain array values have special meaning, use a class
to store items instead.

Gregory Gay CSCE 740 - Fall 2015 21

Refactorings - Simplifying Method
Calls and Generalization

● If a method both returns a value and changes the state of
a passed object, split into two methods and separate the
query from the modifier.

● If several methods do similar things - differentiated by
value - create one method that takes the value as a
parameter.

● If two classes have the same attribute/method/constructor
body, pull it up into the parent. If an item is only used by
some subclasses, push it into the children.

● If a class has features only used situationally, extract
subclasses for those situations.

Gregory Gay CSCE 740 - Fall 2015 22

IDE Support for Refactoring
● Variable/method/class renaming
● Method or constant extraction
● Extraction of redundant code

snippets
● Method signature change
● Extraction of an interface from a

type
● Providing warnings about method

invocations with inconsistent
parameters

● Help with self-documenting code
through auto-completion

Gregory Gay CSCE 740 - Fall 2015 23

Dangers of Refactoring
● Code that used to be well commented, well tested,

and fully reviewed might not be any of these things
after refactoring.

● You might have inserted faults into code that
previously worked.
○ This is why unit tests are important. If the new

code is broken, revert back to the old code.
● What if the new design is not better?

Gregory Gay CSCE 740 - Fall 2015 24

“I Don’t Have Time”
● This is the most common excuse for not refactoring.
● Refactoring incurs an up-front cost.

○ Developers don’t want to do it.

○ Neither do managers - they lose time and get “nothing”
(no new features)

● Small companies (start-ups) avoid it.
○ “We can’t afford it.” “We don’t need it.”

● So do large companies.
○ “We’d rather add new features.”
○ “No one gets promoted for performing refactoring.”

Gregory Gay CSCE 740 - Fall 2015 25

“I Don’t Have Time”
● Refactoring is the key to effective evolution.

○ Enables rapid addition of new features, with fewer
faults (up to a 500% ROI).

○ Good for programmer morale.
● Refactoring is an investment in a company’s prime

asset - its code base.
● Many start-ups use cutting-edge tech and agile

processes that evolve rapidly. So should the code.
● Some of the most successful companies (Google)

reward and require refactoring.
Gregory Gay CSCE 740 - Fall 2015 26

Refactoring at Google
- Victoria Kirst, Software Engineer
● "Refactoring is very important and inevitable for any code

base. If you're writing a new app quickly and adding lots
of features, your initial design will not be perfect. Do small
refactoring tasks early and often, as soon as there is a
sign of a problem."

● "Refactoring is unglamorous because it does not add
features. At many companies, people don't refactor
because you don't get promoted for it, and their code turns
into hacky beasts."

● But...

Gregory Gay CSCE 740 - Fall 2015 27

Refactoring at Google
- Victoria Kirst, Software Engineer
● "Common reasons not to do it are incorrect:

○ 'Don't have time; features more important' - You will spend
more time adding features (because it's painful in current design),
fixing bugs (bad code is easy to add bugs into), ramping up others
on code base (because bad code is hard to read), and adding
tests (because bad code is hard to test), etc.

○ 'We might break something' - Sign of a poor design from the
beginning, where you didn't have good tests. For same reasons
as above, you should fix your testing situation and code.

○ 'I want to get promoted and companies don't recognize
refactoring work' - This is a common problem. Seek buy-in from
your team, gather data about regressions and flaws in the design,
and encourage them to buy-in to code quality."

Gregory Gay CSCE 740 - Fall 2015 28

Activity - Code Smells

The following code for a product ordering system
contains several “bad smells” - signs that the
code is not well-designed and needs to be
refactored.

1: Identify as many code smells as you can in
this code. Explain why each is a problem.
2: Pick three code smells and explain how
you would fix them.

Gregory Gay CSCE 740 - Fall 2015 29

Activity - Solution
Some of the bad smells include:
● Duplicated Code
● Long Method
● Data Class

○ What does lineItemList even do?
● Speculative Generality
● An attribute is only set in certain circumstances
● Inconsistent use of comments.
● Inconsistent naming.
● Too much casting.
● … and several more!

Gregory Gay CSCE 740 - Fall 2015 30

Legacy Systems and
Reengineering

Dealing with Legacy Systems

Legacy systems are often difficult to understand
and change. Options include:
● Get rid of the system.
● Leave it unchanged and only perform

important maintenance.
● Reengineer the system to improve its

maintainability.
● Replace all or part of the system.

Gregory Gay CSCE 740 - Fall 2015 32

Software Reengineering

● Large-scale changes to system structure to
improve quality and understandability.

● May involve:
○ Redocumenting the system
○ Refactoring the source code
○ Translating to a modern programming language
○ Modifying the structure and values of data

● Functionality is not changed, and architecture
should be left mostly intact.

Gregory Gay CSCE 740 - Fall 2015 33

Why Not Replace the System?

● Reduced Risk
○ There is a high risk in redeveloping software. The

current system might not be maintainable, but it has
already been tested. Time to replace is hard to predict.

● Reduced Cost
○ The cost of reengineering is often less than the cost of

developing replacement components.
■ Up to four times cheaper in one study.

Gregory Gay CSCE 740 - Fall 2015 34

Reengineering Techniques
● Source Code Translation

○ Translation tools can update a program from an older

version of a language to a more modern version to
take advantage of new features and compilers.

● Reverse Engineering
○ The program can be analyzed automatically to help

document its functionality and organization.
● Refactoring

○ The structure of the program can be refactored in
stages to make it easier to read and understand.

Gregory Gay CSCE 740 - Fall 2015 35

Reengineering Techniques

● Program Modularization
○ Related parts of the program are grouped together and

redundancy is removed. This may allow the extraction
of relevant subsystems for newer projects.

● Data Reengineering
○ Data processed by the program is changed to reflect

program changes. May involve defining database

schemas and converting existing databases to modern
forms. Mistakes in old data should also be corrected.

Gregory Gay CSCE 740 - Fall 2015 36

Know Your Limitations

● If the cost of reengineering or required effort is
too high, then it may be worth replacing the
code.

● There are practical limits to how much a
system can be improved by reengineering. No
way to automatically:
○ Convert functional to OO programs.

○ Impose radical architectural or data management
changes.

Gregory Gay CSCE 740 - Fall 2015 37

We Have Learned

● The engineering process does not end with
release. Evolving a system involves fault fixes,
environmental adaptations, and new features.

● System evolution leads to structural
degradation.

● The degradation can be slowed by refactoring
the code to restructure the source code and
make additions native.

Gregory Gay CSCE 740 - Fall 2015 38

We Have Learned

● When working with legacy systems, those
systems may need to be reengineered to work
with modern components.

● Reengineering can improve understandability
and maintainability of legacy systems, but has
limitations.

Gregory Gay CSCE 740 - Fall 2015 39

Next Time

● Final Review
○ Questions on practice exam?

● Homework 5 - due day of final.
○ Questions?

Gregory Gay CSCE 740 - Fall 2015 40

