
Final Review
CSCE 740 - Lecture 26 - 12/02/2015

We Will Cover

● You have a final next Monday.
○ December 7th, 9:00 - 11:30 AM

● There is a practice exam on Moodle.
● Let’s go over it!

Gregory Gay CSCE 740 - Fall 2015 2

Question 1
Which of the following make sense as classes (rather than objects) in a
class diagram?
1. Homework Assignment
2. Manton Matthews
3. Group 5’s Assignment 5
4. Person

Which of the following coverage criteria always requires more test cases
than the others?
1. Statement Coverage
2. Branch Coverage
3. Path Coverage
4. None of the above

Gregory Gay CSCE 740 - Fall 2015 3

Question 1
Natural language is typically used for requirements specifications for the following
reason(s):
1. Ease of understanding
2. It is unambiguous
3. It is precise
4. It eliminates misunderstanding between the customer and supplier of the

software

Which of the following are benefits of using checklists when writing requirements:
1. They can be used to refine the existing requirements.
2. They can convince the users to purchase your system.
3. They can help engineers derive missing requirements.
4. They can allow engineers to generate source code from the requirements.

Gregory Gay CSCE 740 - Fall 2015 4

Question 1 - True/False
● Requirements-based test cases help the writer clarify the

requirements.
● In UML, a Class describes an Object.
● The goal of software testing is to remove defects from the goal.
● The use of global variables generally increases coupling.
● An oracle is needed to determine whether a test succeeded.
● Testing can be used to demonstrate that a program is free of

faults.
● Most defects are introduced in the coding stage.
● Path coverage is generally impossible to achieve, but if we

could, we would expose all faults in the program.

Gregory Gay CSCE 740 - Fall 2015 5

Question 2

Describe the key difference between black-box
testing and white-box testing.

Gregory Gay CSCE 740 - Fall 2015 6

Question 2 - Solution
Black-box testing treats the program as a machine that
accepts input and issues output, with no visibility into its
internal workings. Thus, tests are based on the requirements
and specifications. You do not know what classes or methods
are in the code, and you do now know what objects exist at
runtime.

White-box involves testing the independent logic paths with
full knowledge of the source code. However, you do not have
full knowledge of the intended functionality (white box tests
cannot look for unimplemented code).

Gregory Gay CSCE 740 - Fall 2015 7

Question 3
Mention two fundamental characteristics of software that
makes software engineering different than other engineering
disciplines. Please elaborate briefly on each characteristic as
to why it makes software engineering different.

(Alternatively, if you do not agree with the premise of the
question, argue briefly that there is no difference between
software engineering and other engineering disciplines.)

Gregory Gay CSCE 740 - Fall 2015 8

Question 3 - Solution
Many possible reasons for this, but two big ones include:
● Intangibility

○ We can’t visualize software. Thus, it is hard to see problems
early, and hard to judge progress.

● “Software” is not one thing
○ A programming language can be used to build software for

almost any imaginable purpose. Software engineers are
responsible for a wider variety of products than, say, bridge
engineers.

○ The skills needed to design accounting software differ from
those needed for a pacemaker.

Gregory Gay CSCE 740 - Fall 2015 9

Question 4

When we discuss software testing, we refer to
Faults and Failures. Please briefly describe what
a Fault is and what a Failure is. Make sure to
point out the difference between a Fault and a
Failure.

Gregory Gay CSCE 740 - Fall 2015 10

Question 4 - Solution
● A Fault is a problem with the implementation. It is

something that is missing, extra, or erroneous.
● A Failure is an incorrect execution of the software; we get

an output we did not expect.
● A Failure is the manifestation of a Fault, if the execution

executes the Fault and the corrupted state propagates to
the output, we can observe it as a Failure.

Gregory Gay CSCE 740 - Fall 2015 11

Question 5

Are path coverage and exhaustive testing the
same thing? Motivate your answer.

Gregory Gay CSCE 740 - Fall 2015 12

Question 5 - Solution

● No. Path coverage “only” requires that every path
is exercised; it does not require that every input is
tested.

● One can provide path coverage without testing
every instance of the inputs that would take you
down that path. Thus, problems with faults such
as divide-by-zero and null-pointer-dereferencing
might not be caught.

Gregory Gay CSCE 740 - Fall 2015 13

Question 6
You are developing a train scheduling tool for a rail network, where - for each station - a list of arriving
trains is tracked (using a train ID that is a string of three characters and four single-digit integers). Each
day, a new schedule is initialized and the previous day’s schedule is deleted. Additionally, a list is kept of
valid train IDs.

The data structure containing train records contains the following independently testable features:
● void insertInSchedule(station, trainID)
● Boolean existsInSchedule(station, trainID)
● void deleteFromSchedule(station, trainID)

Part 1:
For the system, you receive the following requirement:
“We can’t have a train arrive at a station more than once.”

Revise this requirement so that it is testable.

Gregory Gay CSCE 740 - Fall 2015 14

Question 6 (2)
You are developing a train scheduling tool for a rail network, where - for each station - a list of arriving
trains is tracked (using a train ID that is a string of three characters and four single-digit integers). Each
day, a new schedule is initialized and the previous day’s schedule is deleted. Additionally, a list is kept of
valid train IDs.

The data structure containing train records contains the following independently testable features:
● void insertInSchedule(station, trainID)
● Boolean existsInSchedule(station, trainID)
● void deleteFromSchedule(station, trainID)

Part 1:
Given the obvious meaning of the above methods, develop test cases using input domain partitioning. You
can define your test cases as input/output pairs. For example, to test insert(station, trainID), one test case
could be:
Input: station with empty container, valid trainID
Output: trainID in container

Note - Do not go overboard with test cases, 4-6 test cases per method is adequate

Gregory Gay CSCE 740 - Fall 2015 15

Question 6 (2) - Solution

Gregory Gay CSCE 740 - Fall 2015 16

Insert ID in station / valid ID no change

ID not in station / valid ID ID in container

ID in station / invalid or malformed
ID

Error or no change

ID not in station / invalid or
malformed ID

Error or no change

empty list / valid ID ID in container

empty list / invalid or malformed ID Error or no change

Exists ID in station / valid ID True

ID not in station / valid ID False

ID in station / invalid or malformed
ID

Error (or false)

ID not in station / invalid or
malformed ID

Error (or false)

empty list / valid ID False

empty list / invalid or malformed ID Error (or false)

Delete ID in station / valid ID ID no longer in list

ID not in station / valid ID no change (or error)

ID in station / invalid or
malformed ID

no change (or error)

ID not in station / invalid or
malformed ID

no change (or error)

empty list for station/ valid ID no change (or error)

empty list for station/ invalid or
malformed ID

no change (or error)

Question 7
● Draw the control-flow

graph for this method.
● Develop test input that will

provide statement
coverage.

● Develop test input that will
provide branch coverage.

● Develop test input that will
provide path coverage.

int findMax(int a, int b, int c) {

int temp;

if (a>b)

temp=a;

else

temp=b;

if (c>temp)

temp = c;

return temp;

}

Gregory Gay CSCE 740 - Fall 2015 17

Question 7 - Solution
1. int findMax(int a, int b, int c) {

2. int temp;

3. if (a>b)

4. temp=a;

5. else

6. temp=b;

7. if (c>temp)

8. temp = c;

9. return temp;

10. }

2

3

6

4
T

F

8

7

9

T F

Statement:
(3,2,4), (2,3,4)

Branch:
(3,2,4), (3,4,1)

Path:
(4,2,5), (4,2,1), (2,3,4),
(2,3,1)

Gregory Gay CSCE 740 - Fall 2015 18

Question 7 - Solution
● Modify the program to

introduce a fault such that
even path coverage could
miss the fault.

int findMax(int a, int b, int c) {

int temp;

if (a>b)

temp=a;

else

temp=b;

if (c>temp)

temp = c;

return temp;

}

Use (a >b+1) instead of (a>b) and
the test input from the last slide:
(4,2,5), (4,2,1), (2,3,4), (2,3,1)
will not reveal the fault.

Gregory Gay CSCE 740 - Fall 2015 19

Question 8
Students at USC can be enrolled in more than one class at the time. There is also
an option to not be enrolled in any classes (under special circumstances). We do
not offer classes with no students at all.
To allocate teaching effort, there is one instructor assigned to each class. Some
instructors might not teach any class. Each class uses a textbook (a book that can
be used in other classes also). Depending on class size, there are TAs assisting in
the class. A small class gets no TAs, a large class might get several TAs. When all
is done in the class, the instructor assigns the student a grade for the course. In
return, each student must fill out a course evaluation form for the course.

Develop the class diagram for the situation described above.

Gregory Gay CSCE 740 - Fall 2015 20

Question 8 - Solution

Gregory Gay CSCE 740 - Fall 2015 21

Instructor

Textbook

TA

Course Student

Grade

Evaluation

Assists In

0..*

0..*

Used In

1

0..*
Enrolled In0..* 1..*

Provides

1 1

1

Teaches
1

0..*

Grades

1 1

11

Question 9 - Scenario 1
Scenario 1 (Requesting a Ride Down):
A person approaches the elevator on the fifth floor. She wants to go down so she presses the “down” button next
to the elevators. She waits until an elevator arrives and the doors open. She enters the elevator and presses the
elevator button for the ground floor (floor 1). The light next to the button for the first floor is lit.

aPerson : Person f5Button :
FloorButton

scheduler:
RequestScheduler

car:
Elevator

door:
ElevatorDoor

f5Door:
FloorDoor

pressDown() sendRequest(5);
stopRequest(5); moveToFloor(5);

openDoor();

carButton:
ElevatorButton

pressFloorButton(1);

openDoor();

lightOn();

Gregory Gay CSCE 740 - Fall 2015 22

Question 9 - Scenario 2
Scenario 2 (Getting Off at a Floor):
A person is standing in the elevator with the door closed. The person pushes the elevator button for floor 5(and
there are no other requests). The elevator stops at the fifth floor, opens the doors, and the person steps out. The
elevator doors close.

aPerson : Person car:
Elevator

door:
ElevatorDoor

f5Door:
FloorDoor

openDoor();

carButton:
ElevatorButton

lightOn();

pressFloorButton(5); stopRequest(5);
moveToFloor(5);

openDoor();

closeDoor();
closeDoor();

Gregory Gay CSCE 740 - Fall 2015 23

Question 10
You are developing software that will simulate and execute finite
state machines.
● A state machine consists of states and transitions.

○ One state is special and designated to be the initial state (this is
where we always start). Besides this, the initial state is just like all
other states.

○ The transitions have transition conditions associated with them. A
transition condition consists of a trigger event, a guarding
condition, and a possibly empty set of actions (actions are events
generated as a result of taking the transition).

Develop the Class Diagram for this software.

Gregory Gay CSCE 740 - Fall 2015 24

Question 10 - Solution

Gregory Gay CSCE 740 - Fall 2015 25

State Machine

State

initial: boolean

Transition

1 1

0..*

normal
states

initial state

1

1
source

destination

1
0..*

0..*1

TransitionCondition

Condition

GuardingCondition

1
1

TriggerEvent

Action

1
1

1

0..*

Event

0..*

Question 11
During development and maintenance, some organizations track
“bad fixes” - a bug fix that introduces new faults in the software
when the original fault is corrected. The ratio of bad fixes to “good
fixes” can be measured.
● For example, the ratio of bad fixes to good fixes could be 1% (there is

one bad fix for every 100 good fixes).
● In some troubled projects the bad fix ratio might be over 100%!

What effect will a bad fix ratio of >100% have on software quality?
What do you think would be the main contributor to a very high bad
fix ratio? Justify your answer.

Gregory Gay CSCE 740 - Fall 2015 26

Question 11 - Solution
A bad fix ratio over 100% means that more faults are being
added than are being fixed. Software quality will deteriorate.

Poorly-structured software is likely to be the culprit. With low
cohesion, high coupling, or hard-to-understand algorithms, it
is hard to track down the real source of a fault (may only
make a partial fix) and easy to introduce new faults (hard to
determine the effect of a fix on other parts of the program).

Gregory Gay CSCE 740 - Fall 2015 27

Question 12
A class diagram in UML is generally used during design, but
can also be a useful tool in the requirements elicitation stage
of a software development project. Discuss briefly how class
diagrams might be used in this stage of development.

Gregory Gay CSCE 740 - Fall 2015 28

Question 12 - Solution
UML class diagrams are useful for visualizing entities and
their relationships at any level of abstraction.
● Relationships between data items in the problem domain.
● Clarify the relationships between concepts (credit cards

and customers, students and professors, students and
grades, etc).

● Model can serve as the foundation for natural language
requirements by structuring the problem domain.

○ Cleaner and easier to write specifications because we
can relate to the diagram.

Gregory Gay CSCE 740 - Fall 2015 29

Question 13
Why is it so important to include boundary values in your
black-box test-data?
● Make sure your answer includes a brief description of

what a boundary value is.

Gregory Gay CSCE 740 - Fall 2015 30

Question 13 - Solution
Boundary values are the inputs that are on or close to the
boundaries between the input equivalence partitions as well
as special values we know are tricky to handle correctly.
● We know from experience that programmers make

mistakes with boundary values.
● Thus we should include test cases to see if these cases

are handled correctly.
○ Include values such as zero, very large, very small,

empty list, max long list, etc.

Gregory Gay CSCE 740 - Fall 2015 31

Question 14

When performing reliability (statistical) testing, an operational

profile is absolutely essential for the test-data selection. Why?
What is the effect of an inaccurate operational profile?

Gregory Gay CSCE 740 - Fall 2015 32

Question 14 - Solution
Since the reliability metrics are designed to measure the
reliability of a system under normal operating conditions it is
essential to know what “normal” operating conditions are.
● This is what the operational profile is supposed to capture.
● If the reliability is assessed using a profile that does not

accurately capture the real operating conditions, the
measure is meaningless.

Gregory Gay CSCE 740 - Fall 2015 33

Question 15
Consider the use case “Submit Assignment Solution” for a homework assignment
and collection system, where a student is asked to complete and submit an
“assignment submission form” where they give various pieces of information
including name, course number, session number, and assignment number. The
student then attaches her solution and presses the submit button. Before the
assignment solution is accepted, the student-provided information is validated
against the class roster.

List two (2) exceptions you think can occur for this use case. For each of the
exceptions, also specify what you think the proper response from HACS should
be.

Gregory Gay CSCE 740 - Fall 2015 34

Question 15 - Solution
Erroneous information: A student enters the wrong class or
session number or the wrong assignment number. In both
cases a warning message and possibly a helpful message
along the lines of “You are not enrolled in CSCE 747 for the
Fall of 2015, you are enrolled in: CSCE 740.”

No assignment attached: All information is correct, but no file
to upload has been selected. An error message pointing this
out would be an appropriate response.

Gregory Gay CSCE 740 - Fall 2015 35

Question 16
Early in the class we discussed several Fundamental
Principles of software engineering. One was Separation of
Concerns. This principle is visible in the fact that in a
comprehensive modeling framework, such as UML, there are
several different diagrams supported.
Please briefly explain how the principle of Separation of
Concerns is manifested in fact that UML contains many
different diagram types.

Gregory Gay CSCE 740 - Fall 2015 36

Question 16 - Solution

Each separate concern can be realized in a
diagram suitable for modeling that concern.
● A class diagram for structure.
● Sequence diagrams to illustrate the order of

messages or events.
● State machines for the reactive behavior.
● Use cases to examine the goals of actors.

Gregory Gay CSCE 740 - Fall 2015 37

Any other questions?

Thank you for a great
semester!

