
This is the third of five assignments that you will complete over the course of the semester:

1: Requirements Draft (10% of homework grade)
2: Final Requirements and Requirement-Based Tests (25%)
3: Design Draft (15%)
4: Final Design and Implementation (25%)
5: Testing (25%)

Each assignment is graded over a series of categories. You will be judged on a scale of 1-4 for
each criterion, where a 1 corresponds to a 60%, a 2 corresponds to 75%, a 3 corresponds to
90%, and a 4 corresponds to 100%. If there is no work for a criterion or it is clear that even a
minimal amount of effort was not put in, you will receive a 0% for that section of the assignment.

The following is a tentative idea of what we are looking for in Assignment 3. This may change
before final grading, but gives criteria to aim for with your submission. A “4” in a category
requires all requested elements to be present. Missing elements will result in a lower grade.

Organization (15%):

● Have a good organization including a logical layout.
● All sections present.
● Design formatted to be easily understood.
● Uses good grammar, and has a single voice.
● No irrelevant data.

System Architecture (30%):

● Introduction, architectural overview, interface, and data store sections present.
● Material provides proper context and background on the group’s version of MEAT.
● Proper differentiation between internal data stores (any persistent storage used internally

by MEAT) and external data sources.
● Proper use of interfaces when discussing architecture (i.e., any interface between MEAT

and users, external systems, or data sources, not “Java interfaces”).

Structural Design (55%):

● Overall design
○ Extensible OO design that is clearly capable of providing the requested

functionality.
○ High cohesion and low coupling.
○ All interfacing with MEAT is through a defined interface. Access is controlled, and

proper privacy and scoping is maintained.
○ Customized Exceptions ​

● Class Diagram
○ Properly formed UML.
○ External files and systems should not be present in class diagram.

● Justification and Explanation
○ VERY IMPORTANT to justify and explain your design. Must show that

different options were considered and why/how group arrived at final
design. Must demonstrate understanding of OO principles.

○ Automatic maximum of 2 on this section if no justification present.
● Class Descriptions​

○ Level of detail is sufficient. Is this implementable by another team?

