Testing Fundamentals
CSCE 740 - Lecture 20 - 11/01/2016

When is software ready
for release?

Basic Answer...

Software is ready for release when you can argue
that it is dependable.

e Correct, reliable, safe, and robust.

e The primary process of making software
dependable (and providing evidence of
dependability) is Verification and Validation.
o Testing is our primary form of verification.

Gregory Gay CSCE 740 - Fall 2016 3

We Will Cover

e Reuvisiting Verification & Validation

e Testing definitions
o Let’s get the language right.

e \What is a test?
e Principles of analysis and testing.

e Testing stages.
o Unit, Subsystem, System, and Acceptance Testing

Gregory Gay CSCE 740 - Fall 2016 4

Verification and Validation

Activities that must be performed to consider
the software “done.”

e Verification: The process of proving that the
software conforms to its specified functional
and non-functional requirements.

e Validation: The process of proving that the
software meets the customer’s true
requirements, needs, and expectations.

Gregory Gay CSCE 740 - Fall 2016 5

Verification and Validation

Barry Boehm, inventor of “software
engineering” describes them as:

e Verification: “Are we building the product
right?”

e Validation: “Are we building the right
product?”

Gregory Gay CSCE 740 - Fall 2016 6

Verification

e [s the implementation consistent with its
specification”?

o “Specification” and “implementation” are roles.

m Source code and requirement specification.

m Detailed design and high-level architecture.
m Test oracle and requirement specification.

e \erification is an experiment.

o Does the software work under the conditions we
set?

o We can perform trials, evaluate the software, and
provide evidence for verification.

Gregory Gay CSCE 740 - Fall 2016 7

Validation

e Does the product work in the real world?

o Does the software fulfill the users’ actual
requirements?

e Not the same as conforming to a
specification.

o If we specify and implement all behaviors related to
two buttons, we can achieve verification.

o If the user expected a third button, we have not
achieved validation.

Gregory Gay CSCE 740 - Fall 2016 8

Verification and Validation

e Verification
o Does the software work as intended?

e Validation
o Does the software meet the needs of your users?
o This Is much harder.

Validation shows that software is useful.
Verification shows that it is dependable. Both
are needed to be ready for release.

Gregory Gay CSCE 740 - Fall 2016 9

Verification and Validation:

Motivation

Which is more important?

e Both are important.

o A well-verified system might not meet the user’s needs.
o A system can’t meet the user’s needs unless it is
well-constructed.

When do you perform V&V?

e Constantly, throughout development.

o Verification requires specifications, but can begin

then and be executed throughout development.
o Validation can start at any time by seeking feedback.

Gregory Gay CSCE 740 - Fall 2016 10

Required Level of V&V

The goal of V&V is to establish confidence that the
system is “fit for purpose.”

How confident do you need to be? Depends on:

e Software Purpose: The more critical the software,
the more important that it is reliable.

e User Expectations: \When a new system is
iInstalled, how willing are users to tolerate bugs
because benefits outweigh cost of failure recovery.

e Marketing Environment: Must take into account

competing products - features and cost - and speed
to market.

Gregory Gay CSCE 740 - Fall 2016 11

Types of Verification

Static Verification

e Analysis of static system artifacts to discover
problems.
o Proofs: Posing hypotheses and making a logical

argument for their validity using specifications,
system models, etc.

o Inspections: Manual “sanity check” on artifacts (such

as source code) by other people or tools, searching
for issues.

Gregory Gay CSCE 740 - Fal 2016 12

Advantages of Static Verification

e During execution, errors can hide other errors. It
can be hard to find all problems or trace back to a
single source. Static inspections are not impacted
by program interactions.

e Incomplete systems can be inspected without
additional costs. If a program is incomplete,
special code is needed to run the part that is to be
tested.

e |nspection can also assess quality attributes such
as maintainability, portability, poor programming,
Inefficiencies, etc.

Gregory Gay CSCE 740 - Fall 2016 13

Dynamic Verification

e EXxercising and observing the system to

argue that it meets the requirements.
o Testing: Formulating controlled sets of input to
demonstrate requirement satisfaction.

e Static verification is not good at discovering
problems that arise from runtime interaction,
timing problems, or performance issues.

e Dynamic verification is often cheaper than
static - easier to automate.

Gregory Gay CSCE 740 - Fall 2016 14

Software Testing

e An investigation conducted to provide
information about system quality.
e Analysis of sequences of stimuli and

observations.
o We create stimuli that the system must react to.

o We record observations, noting how the system
reacted to the stimuli.

o We issue judgements on the correctness of of the
sequences observed.

Gregory Gay CSCE 740 - Fall 2016 15

What is a Test?

During testing, we instrument the system under test
and run test cases. J

Expected
Output

t Do they match?

Input SUT
7 Output \

To test, we need:

e Test Input - Stimuli fed to the system.
e Test Oracle - The expected output, and a way to check
whether the actual output matches the expected output.

Gregory Gay CSCE 740 - Fall 2016 16

Anatomy of a Test Case

e Input
o Any required input data.

e Expected Output (Oracle)

o What should happen, i.e., values or exceptions.

e [nitialization
o Any steps that must be taken before test execution.

e Test Steps

o Interactions with the system, and comparisons
between expected and actual values.

e Tear Down
o Any steps that must be taken after test execution.

Gregory Gay CSCE 740 - Fall 2016 17

Bugs? What are Those?

e Bug is an overloaded term - does it refer to
the bad behavior observed, the source code
problem that led to that behavior, or both?

e Failure
o An execution that yields an incorrect result.

e Fault
o The problem that is the source of that failure.
o For instance, a typo in a line of the source code.

e \When we observe a failure, we try to find the
fault that caused it.

Gregory Gay CSCE 740 - Fall 2016 18

Software Testing

e The main purpose of testing is to find faults:
“Testing is the process of trying to discover
every conceivable fault or weakness in a
work product” - Glenford Myers

e Tests must reflect both normal system usage
and extreme boundary events.

Gregory Gay CSCE 740 - Fall 2016 19

Testing Scenarios

e Verification: Demonstrate to the customer

that the software meets the specifications.

o Tests tend to reflect “normal” usage.

o If the software doesn’t conform to the
specifications, there is a fault.

e Fault Detection: Discover situations where

the behavior of the software is incorrect.
o Tests tend to reflect extreme usage.

Gregory Gay CSCE 740 - Fall 2016 20

Axiom of Testing

"Program testing can be used
to show the presence of
bugs, but never their

absence.”
- Dijkstra

Gregory Gay CSCE 740 - Fall 2016 21

Black and White Box Testing

e Black Box (Functional) Testing
o Designed without knowledge of the program’s
iInternal structure and design.

o Based on functional and non-functional requirement
specifications.

e \White Box (Structural) Testing

o Examines the internal design of the program.
o Requires detailed knowledge of its structure.

o Tests typically based on coverage of the source

code (all statements/conditions/branches have been

executed)
Gregory Gay CSCE 740 - Fall 2016 22

Testing Stages

e Unit Testing
o Testing of individual methods of a class.
o Requires design to be final, so usually written and
executed simultaneously with coding of the units.
e Module Testing
o Testing of collections of dependent units.

o Takes place at same time as unit testing, as soon as
all dependent units complete.

e Subsystem Integration Testing
o Testing modules integrated into subsystems.

o Tests can be written once design is finalized, using
SRS document,

Gregory Gay CSCE 740 - Fall 2016 23

Testing Stages

e System Integration Testing

o Integrate subsystems into a complete system, then
test the entire product.

o Tests can be written as soon as specification is
finalized, executed after subsystem testing.

e Acceptance Testing

o Give product to a set of users to check whether it

meets their needs. Can also expose more faults.
o Also called alpha/beta testing.

o Acceptance planning can take place during
requirements elicitation.

Gregory Gay CSCE 740 - Fall 2016 24

The V-Model of Development

N
Acceptance
Requirements | __ ___-------°77 . Test Plan S Operation and
Elicitation Rl J \\ Maintenance
o7 System b \\
R Integration | AN /
System L= / TestPlan), “4] Acceptance
Specification)/ \ Testing
I' Subsystem ‘\
\ K Integration Y /
7/ ’ \
Architectural |~ HCECIHED \ P SR
Design IA . Integrf:\tlon
I Y Testing
\ / X
I/
Detailed | SR
I Desian Integration
e 9 Testing
y 3
Unit Test Plan - il
~~~~~~ Development
~~=-»| and Testing

Gregory Gay CSCE 740 - Fall 2016 25



Unit Testing

e Unit testing is the process of testing the

smallest isolated “unit” that can be tested.

o Often, a class and its methods.
o A small set of dependent classes.

e Test input should be calls to methods with
different input parameters.

e For a class, tests should:
o Test all “jobs” associated with the class.

o Set and check the value of all attributes associated

with the class.
o Put the class into all possible states.

Gregory Gay CSCE 740- Fall 2016 26



Unit Testing - WeatherStation

When writing unit tests for

WeatherStation WeatherStation, we need:
identifier e Set and check identifier.
testLink() e Tests for each “job” performed by
reportWeather() the class.
rtStat
iiifart(i,?si’ri‘?nems) o Methods that work together to
shutd?wn(irzstrumentj)) perform that class’ responsibilities.
reconfigure(commands .
e Tests that hit each outcome of

each “job” (error handling, return
conditions).

Gregory Gay CSCE 740 - Fall 2016 27



Unit Testing - Object Mocking

Components may depend on WeatherData
other, unfinished (or temperature
windSpeed
untested) components. You windDirection
can mOCk thOse lastReadingTime
com po nen tS . EOIrI:r:]te(l)rize(time)
e Mock objects have the
same interface as the real g
component, but are T e———
hand-created to simulate ther_identifier
the real component. %;eer:(';’erat“re
e (Can also be used to shutdown() | get()
simulate abnormal operation L, M J

or rare events.

Gregory Gay CSCE 740 - Fall 2016 28



Subsystem Testing

e Most software works by combining multiple,
iInteracting components.

o |n addition to testing components independently, we
must test their integration.

e Functionality performed across components
Is accessed through a defined interface.
o Therefore, integration testing focuses on showing

that functionality accessed through this interface
behaves according to the specifications.

Gregory Gay CSCE 740 - Fall 2016 29



Subsystem Testing

We have a subsystem made
up of A, B, and C. We have

performed unit testing... 4//]\“
e However, they work together

Test Cases

to perform functions.

e Therefore, we apply test I
cases not to the classes, but A e— B
to the interface of the \
subsystem they form. c

e FErrors in their combined

behavior result are not
caught by unit testing.

Gregory Gay CSCE 740 - Fall 2016 30



Interface Types

e Parameter Interfaces
o Data is passed from one component to another.

o All methods that accept arguments have a
parameter interface.

o If functionality is triggered by a method call, test
different parameter combinations to that call.

e Procedural Interfaces

o When one component encapsulates a set of
functions that can be called by other components.

o Controls access to subsystem functionality. Thus, is
important to test rigorously.

Gregory Gay CSCE 740 - Fall 2016 31



Interface Types

e Shared Memory Interfaces
o A block of memory is shared between components.

o Data is placed in this memory by one subsystem and
retrieved by another.

o Common if system is architected around a central
data repository.

e Message-Passing Interfaces
o Interfaces where one component requests a service
by passing a message to another component. A

return message indicates the results of executing the

service.

cregory &y COMmMon in pargllel systems, client-server systems. ,,



Interface Errors

e |nterface Misuse
o A calling component calls another component and makes
an error in the use of its interface.
o Wrong type or malformed data passed to a parameter,

parameters passed in the wrong order, wrong number of
parameters.

e Interface Misunderstanding
o Incorrect assumptions made about the called component.
o A binary search called with an unordered array.

e Timing Errors

o In shared memory or message passing - producer of data
and consumer of data may operate at different speeds,
and may access out of data information as a result.

Gregory Gay CSCE 740 - Fall 2016 33



System Testing

Systems are developed as interacting
subsystems. Once units and subsystems are
tested, the combined system must be tested.

e Advice about interface testing still important here (you
interact with a system through some interface).
e Two important differences:

o Reusable components (off-the-shelf systems) need
to be integrated with the newly-developed
components.

o Components developed by different team members
or groups need to be integrated.

Gregory Gay CSCE 740 - Fall 2016 34



Acceptance Testing

Once the system is internally tested, it should
be placed in the hands of users for feedback.

e Users must ultimately approve the system.

e Many faults do not emerge until the system

IS used in the wild.

o Alternative operating environments.
o More eyes on the system.
o Wide variety of usage types.

e Acceptance testing allows users to try the
system under controlled conditions.

Gregory Gay CSCE 740 - Fall 2016 35



Acceptance Testing Types

Three types of user-based testing:
e Alpha Testing

o A small group of users work closely with
development team to test the software.
e Beta Testing
o A release of the software is made available to a
larger group of interested users.
e Acceptance Testing

o Customers decide whether or not the system is
ready to be released.

Gregory Gay CSCE 740 - Fall 2016

36



Acceptance Testing Stages

e Define acceptance criteria

o Work with customers to define how validation will be
conducted, and the conditions that will determine
acceptance.

e Plan acceptance testing

o Decide resources, time, and budget for acceptance
testing. Establish a schedule. Define order that features
should be tested. Define risks to testing process.

e Derive acceptance tests.

o Design tests to check whether or not the system is
acceptable. Test both functional and non-functional
characteristics of the system.

Gregory Gay CSCE 740 - Fall 2016 37



Acceptance Testing Stages

e Run acceptance tests
o Users complete the set of tests. Should take place in

the same environment that they will use the
software. Some training may be required.

e Negotiate test results
o Itis unlikely that all of the tests will pass the first

time. Developer and customer negotiate to decide if
the system is good enough or if it needs more work.

e Reject or accept the system

o Developers and customer must meet to decide

whether the system is ready to be released.
Gregory Gay CSCE 740 - Fall 2016 38



Dependability Properties

e \When performing verification, we want to

prove four things about the system:
o Thatitis correct.

o That itis reliable.

o Thatitis safe.

o Thatis is robust.

Gregory Gay CSCE 740 - Fall 2016 39



Correctness

e A program is correct if it is consistent with
its specifications.

o A program cannot be 30% correct. It is either correct
or not correct.

o A program can easily be shown to be correct with
respect to a bad specification. However, it is often

Impossible to prove correctness with a good,
detailed specification.

o Correctness is a goal to aim for, but is rarely
provably achieved.

Gregory Gay CSCE 740 - Fall 2016 40



SCYET114Y

e A statistical approximation of correctness.
e Reliability is a measure of the likelihood of
correct behavior from some period of

observed behavior.
o Time period, number of system executions

o Measured relative to a specification and a usage
profile (expected pattern of interaction).

m Reliability is dependent on how the system is
iInteracted with by a user.

Gregory Gay CSCE 740 - Fall 2016 41



e Two flaws with correctness/reliability:

o 3Success is relative to the strength of the
specification.

o Severity of a failure is not considered. Some failures
are worse than others.
e Safety is the ability of the software to avoid

hazards.

o Hazard = any undesirable situation.
o Relies on a specification of hazards.

m Butis only concerned with avoiding hazards, not
other aspects of correctness.

Gregory Gay CSCE 740 - Fall 2016 42



Robustness

e Correctness and reliability are contingent on
normal operating conditions.

e Software that is “correct” may still fail when
the assumptions of its design are violated.
How it fails matters.

e Software that “gracefully” fails is robust.
o Consider events that could cause system failure.

o Decide on an appropriate counter-measure to
ensure graceful degradation of services.

Gregory Gay CSCE 740 - Fall 2016 43



Dependability Property Relations

failures can occur rarely catastrophic failures can occur

J Reliable but not correct: Robust but not safe: }\
|

Correct but not safe: -’f ‘\,l Safe but not correct:
the specification is inadequate annoying failures can occur

Gregory Gay CSCE 740 - Fall 2016 44



Six Essentials of Testing

Adapted from Software Testing in the Real World, Edward Kit; Addison-Wesley, 1995

e The quality of the test process determines
the success of the test effort.

e Prevent defect migration by using early
life-cycle testing techniques.
o Start testing early.

e The time for software testing tools is now.

Gregory Gay CSCE 740 - Fall 2016

45



Six Essentials of Testing

e A real person must take responsibility for
Improving the testing process.

e Testing is a professional discipline requiring
trained, skilled people.

e Cultivate a positive team attitude of creative
destruction.

Gregory Gay CSCE 740 - Fall 2016 46



The Key to Effective Testing:

Offering the Right Incentives

NV E)

OUR GOAL I3 TO WRITE
BUGFREE SOFTWARE .
T'LL PAY A TEN-DOLLAR
BONUS FOR EVERY BUG
YOU FIND AND FILR,

y ARG o} TS GRITEME A

DRIVES MEL) MINIVAN

AN | THERIGHT  THLS AFTER-
\l/ WE oA Nes '™ 13| geMavIoR.  NOON!

5. A s E-mail: SCOTTADAMSBADL COM
l'f-'_'t £ 1995 Unitsd Fasturs & ot

Gregory Gay CSCE 740 - Fall 2016 47



We Have Learned

e \What is testing?

e Testing terminology and definitions.

e Testing stages include unit testing,
subsystem testing, system testing, and
acceptance testing.

e \We want testing to result in systems that are
correct, reliable, safe, and robust.

Gregory Gay CSCE 740 - Fall 2016 48



Next Time

e Structural (White-Box) Testing

o Using the source code to derive test cases.

e Homework 4
o Out now. Due November 20.
m Fix any design issues (will have feedback soon)
m Add sequence diagrams.
m Code the system.
o Any questions?

Gregory Gay CSCE 740 - Fall 2016 49



