
Testing Fundamentals
CSCE 740 - Lecture 20 - 11/01/2016

When is software ready
for release?

Basic Answer...

Software is ready for release when you can argue
that it is dependable.
● Correct, reliable, safe, and robust.
● The primary process of making software

dependable (and providing evidence of
dependability) is Verification and Validation.
○ Testing is our primary form of verification.

Gregory Gay CSCE 740 - Fall 2016 3

We Will Cover

● Revisiting Verification & Validation
● Testing definitions

○ Let’s get the language right.
● What is a test?
● Principles of analysis and testing.
● Testing stages.

○ Unit, Subsystem, System, and Acceptance Testing

Gregory Gay CSCE 740 - Fall 2016 4

Verification and Validation

Activities that must be performed to consider
the software “done.”

● Verification: The process of proving that the
software conforms to its specified functional
and non-functional requirements.

● Validation: The process of proving that the
software meets the customer’s true
requirements, needs, and expectations.

Gregory Gay CSCE 740 - Fall 2016 5

Verification and Validation

Barry Boehm, inventor of “software
engineering” describes them as:

● Verification: “Are we building the product
right?”

● Validation: “Are we building the right
product?”

Gregory Gay CSCE 740 - Fall 2016 6

Verification

● Is the implementation consistent with its
specification?
○ “Specification” and “implementation” are roles.

■ Source code and requirement specification.
■ Detailed design and high-level architecture.
■ Test oracle and requirement specification.

● Verification is an experiment.
○ Does the software work under the conditions we

set?
○ We can perform trials, evaluate the software, and

provide evidence for verification.

Gregory Gay CSCE 740 - Fall 2016 7

Validation

● Does the product work in the real world?
○ Does the software fulfill the users’ actual

requirements?
● Not the same as conforming to a

specification.
○ If we specify and implement all behaviors related to

two buttons, we can achieve verification.
○ If the user expected a third button, we have not

achieved validation.

Gregory Gay CSCE 740 - Fall 2016 8

Verification and Validation

● Verification
○ Does the software work as intended?

● Validation
○ Does the software meet the needs of your users?
○ This is much harder.

Validation shows that software is useful.
Verification shows that it is dependable. Both
are needed to be ready for release.

Gregory Gay CSCE 740 - Fall 2016 9

Verification and Validation:
Motivation

Which is more important?
● Both are important.

○ A well-verified system might not meet the user’s needs.
○ A system can’t meet the user’s needs unless it is

well-constructed.

When do you perform V&V?
● Constantly, throughout development.

○ Verification requires specifications, but can begin
then and be executed throughout development.

○ Validation can start at any time by seeking feedback.

Gregory Gay CSCE 740 - Fall 2016 10

Required Level of V&V

The goal of V&V is to establish confidence that the
system is “fit for purpose.”
How confident do you need to be? Depends on:
● Software Purpose: The more critical the software,

the more important that it is reliable.
● User Expectations: When a new system is

installed, how willing are users to tolerate bugs
because benefits outweigh cost of failure recovery.

● Marketing Environment: Must take into account
competing products - features and cost - and speed
to market.

Gregory Gay CSCE 740 - Fall 2016 11

Types of Verification

Static Verification
● Analysis of static system artifacts to discover

problems.
○ Proofs: Posing hypotheses and making a logical

argument for their validity using specifications,
system models, etc.

○ Inspections: Manual “sanity check” on artifacts (such
as source code) by other people or tools, searching
for issues.

Gregory Gay CSCE 740 - Fal 2016 12

Advantages of Static Verification

● During execution, errors can hide other errors. It
can be hard to find all problems or trace back to a
single source. Static inspections are not impacted
by program interactions.

● Incomplete systems can be inspected without
additional costs. If a program is incomplete,
special code is needed to run the part that is to be
tested.

● Inspection can also assess quality attributes such
as maintainability, portability, poor programming,
inefficiencies, etc.

Gregory Gay CSCE 740 - Fall 2016 13

Dynamic Verification

● Exercising and observing the system to
argue that it meets the requirements.
○ Testing: Formulating controlled sets of input to

demonstrate requirement satisfaction.
● Static verification is not good at discovering

problems that arise from runtime interaction,
timing problems, or performance issues.

● Dynamic verification is often cheaper than
static - easier to automate.

Gregory Gay CSCE 740 - Fall 2016 14

Software Testing

● An investigation conducted to provide
information about system quality.

● Analysis of sequences of stimuli and
observations.
○ We create stimuli that the system must react to.
○ We record observations, noting how the system

reacted to the stimuli.
○ We issue judgements on the correctness of of the

sequences observed.

Gregory Gay CSCE 740 - Fall 2016 15

What is a Test?

During testing, we instrument the system under test
and run test cases.

To test, we need:
● Test Input - Stimuli fed to the system.
● Test Oracle - The expected output, and a way to check

whether the actual output matches the expected output.

SUTInput

Output

Expected
Output

Do they match?

Gregory Gay CSCE 740 - Fall 2016 16

Anatomy of a Test Case

● Input
○ Any required input data.

● Expected Output (Oracle)
○ What should happen, i.e., values or exceptions.

● Initialization
○ Any steps that must be taken before test execution.

● Test Steps
○ Interactions with the system, and comparisons

between expected and actual values.
● Tear Down

○ Any steps that must be taken after test execution.

Gregory Gay CSCE 740 - Fall 2016 17

Bugs? What are Those?

● Bug is an overloaded term - does it refer to
the bad behavior observed, the source code
problem that led to that behavior, or both?

● Failure
○ An execution that yields an incorrect result.

● Fault
○ The problem that is the source of that failure.
○ For instance, a typo in a line of the source code.

● When we observe a failure, we try to find the
fault that caused it.

Gregory Gay CSCE 740 - Fall 2016 18

Software Testing

● The main purpose of testing is to find faults:

“Testing is the process of trying to discover
every conceivable fault or weakness in a
work product” - Glenford Myers

● Tests must reflect both normal system usage
and extreme boundary events.

Gregory Gay CSCE 740 - Fall 2016 19

Testing Scenarios

● Verification: Demonstrate to the customer
that the software meets the specifications.
○ Tests tend to reflect “normal” usage.
○ If the software doesn’t conform to the

specifications, there is a fault.

● Fault Detection: Discover situations where
the behavior of the software is incorrect.
○ Tests tend to reflect extreme usage.

Gregory Gay CSCE 740 - Fall 2016 20

Axiom of Testing

“Program testing can be used
to show the presence of
bugs, but never their
absence.”

- Dijkstra

Gregory Gay CSCE 740 - Fall 2016 21

Black and White Box Testing

● Black Box (Functional) Testing
○ Designed without knowledge of the program’s

internal structure and design.
○ Based on functional and non-functional requirement

specifications.

● White Box (Structural) Testing
○ Examines the internal design of the program.
○ Requires detailed knowledge of its structure.
○ Tests typically based on coverage of the source

code (all statements/conditions/branches have been
executed)

Gregory Gay CSCE 740 - Fall 2016 22

Testing Stages

● Unit Testing
○ Testing of individual methods of a class.
○ Requires design to be final, so usually written and

executed simultaneously with coding of the units.
● Module Testing

○ Testing of collections of dependent units.
○ Takes place at same time as unit testing, as soon as

all dependent units complete.
● Subsystem Integration Testing

○ Testing modules integrated into subsystems.
○ Tests can be written once design is finalized, using

SRS document.
Gregory Gay CSCE 740 - Fall 2016 23

Testing Stages

● System Integration Testing
○ Integrate subsystems into a complete system, then

test the entire product.
○ Tests can be written as soon as specification is

finalized, executed after subsystem testing.
● Acceptance Testing

○ Give product to a set of users to check whether it
meets their needs. Can also expose more faults.

○ Also called alpha/beta testing.
○ Acceptance planning can take place during

requirements elicitation.

Gregory Gay CSCE 740 - Fall 2016 24

The V-Model of Development

Requirements
Elicitation

System
Specification

Architectural
Design

Detailed
Design

Unit
Development
and Testing

Subsystem
Integration

Testing

System
Integration

Testing

Acceptance
Testing

Operation and
Maintenance

Acceptance
Test Plan

System
Integration
Test Plan

Subsystem
Integration
Test Plan

Unit Test Plan

Gregory Gay CSCE 740 - Fall 2016 25

Unit Testing

● Unit testing is the process of testing the
smallest isolated “unit” that can be tested.
○ Often, a class and its methods.
○ A small set of dependent classes.

● Test input should be calls to methods with
different input parameters.

● For a class, tests should:
○ Test all “jobs” associated with the class.
○ Set and check the value of all attributes associated

with the class.
○ Put the class into all possible states.

Gregory Gay CSCE 740- Fall 2016 26

Unit Testing - WeatherStation

When writing unit tests for
WeatherStation, we need:
● Set and check identifier.
● Tests for each “job” performed by

the class.
○ Methods that work together to

perform that class’ responsibilities.
● Tests that hit each outcome of

each “job” (error handling, return
conditions).

WeatherStation

identifier

testLink()
reportWeather()
reportStatus()
restart(instruments)
shutdown(instruments)
reconfigure(commands)

Gregory Gay CSCE 740 - Fall 2016 27

Unit Testing - Object Mocking

Components may depend on
other, unfinished (or
untested) components. You
can mock those
components.
● Mock objects have the

same interface as the real
component, but are
hand-created to simulate
the real component.

● Can also be used to
simulate abnormal operation
or rare events.

WeatherData

temperature
windSpeed
windDirection
pressure
lastReadingTime

collect()
summarize(time)

Thermometer

ther_identifier
temperature

get()
shutdown()
restart()

Mock_Thermometer

ther_identifier
temperature

get()
shutdown()
restart()

get(){
return 98;

}

Gregory Gay CSCE 740 - Fall 2016 28

Subsystem Testing

● Most software works by combining multiple,
interacting components.
○ In addition to testing components independently, we

must test their integration.
● Functionality performed across components

is accessed through a defined interface.
○ Therefore, integration testing focuses on showing

that functionality accessed through this interface
behaves according to the specifications.

Gregory Gay CSCE 740 - Fall 2016 29

Subsystem Testing

We have a subsystem made
up of A, B, and C. We have
performed unit testing...
● However, they work together

to perform functions.
● Therefore, we apply test

cases not to the classes, but
to the interface of the
subsystem they form.

● Errors in their combined
behavior result are not
caught by unit testing.

A

C

B

Test Cases

Gregory Gay CSCE 740 - Fall 2016 30

Interface Types

● Parameter Interfaces
○ Data is passed from one component to another.
○ All methods that accept arguments have a

parameter interface.
○ If functionality is triggered by a method call, test

different parameter combinations to that call.
● Procedural Interfaces

○ When one component encapsulates a set of
functions that can be called by other components.

○ Controls access to subsystem functionality. Thus, is
important to test rigorously.

Gregory Gay CSCE 740 - Fall 2016 31

Interface Types

● Shared Memory Interfaces
○ A block of memory is shared between components.
○ Data is placed in this memory by one subsystem and

retrieved by another.
○ Common if system is architected around a central

data repository.
● Message-Passing Interfaces

○ Interfaces where one component requests a service
by passing a message to another component. A
return message indicates the results of executing the
service.

○ Common in parallel systems, client-server systems.Gregory Gay CSCE 740 - Fall 2016 32

Interface Errors

● Interface Misuse
○ A calling component calls another component and makes

an error in the use of its interface.
○ Wrong type or malformed data passed to a parameter,

parameters passed in the wrong order, wrong number of
parameters.

● Interface Misunderstanding
○ Incorrect assumptions made about the called component.
○ A binary search called with an unordered array.

● Timing Errors
○ In shared memory or message passing - producer of data

and consumer of data may operate at different speeds,
and may access out of data information as a result.

Gregory Gay CSCE 740 - Fall 2016 33

System Testing

Systems are developed as interacting
subsystems. Once units and subsystems are
tested, the combined system must be tested.
● Advice about interface testing still important here (you

interact with a system through some interface).
● Two important differences:

○ Reusable components (off-the-shelf systems) need
to be integrated with the newly-developed
components.

○ Components developed by different team members
or groups need to be integrated.

Gregory Gay CSCE 740 - Fall 2016 34

Acceptance Testing

Once the system is internally tested, it should
be placed in the hands of users for feedback.
● Users must ultimately approve the system.
● Many faults do not emerge until the system

is used in the wild.
○ Alternative operating environments.
○ More eyes on the system.
○ Wide variety of usage types.

● Acceptance testing allows users to try the
system under controlled conditions.

Gregory Gay CSCE 740 - Fall 2016 35

Acceptance Testing Types

Three types of user-based testing:
● Alpha Testing

○ A small group of users work closely with
development team to test the software.

● Beta Testing
○ A release of the software is made available to a

larger group of interested users.
● Acceptance Testing

○ Customers decide whether or not the system is
ready to be released.

Gregory Gay CSCE 740 - Fall 2016 36

Acceptance Testing Stages

● Define acceptance criteria
○ Work with customers to define how validation will be

conducted, and the conditions that will determine
acceptance.

● Plan acceptance testing
○ Decide resources, time, and budget for acceptance

testing. Establish a schedule. Define order that features
should be tested. Define risks to testing process.

● Derive acceptance tests.
○ Design tests to check whether or not the system is

acceptable. Test both functional and non-functional
characteristics of the system.

Gregory Gay CSCE 740 - Fall 2016 37

Acceptance Testing Stages

● Run acceptance tests
○ Users complete the set of tests. Should take place in

the same environment that they will use the
software. Some training may be required.

● Negotiate test results
○ It is unlikely that all of the tests will pass the first

time. Developer and customer negotiate to decide if
the system is good enough or if it needs more work.

● Reject or accept the system
○ Developers and customer must meet to decide

whether the system is ready to be released.
Gregory Gay CSCE 740 - Fall 2016 38

Dependability Properties

● When performing verification, we want to
prove four things about the system:
○ That it is correct.
○ That it is reliable.
○ That it is safe.
○ That is is robust.

Gregory Gay CSCE 740 - Fall 2016 39

Correctness

● A program is correct if it is consistent with
its specifications.
○ A program cannot be 30% correct. It is either correct

or not correct.
○ A program can easily be shown to be correct with

respect to a bad specification. However, it is often
impossible to prove correctness with a good,
detailed specification.

○ Correctness is a goal to aim for, but is rarely
provably achieved.

Gregory Gay CSCE 740 - Fall 2016 40

Reliability

● A statistical approximation of correctness.
● Reliability is a measure of the likelihood of

correct behavior from some period of
observed behavior.
○ Time period, number of system executions
○ Measured relative to a specification and a usage

profile (expected pattern of interaction).
■ Reliability is dependent on how the system is

interacted with by a user.

Gregory Gay CSCE 740 - Fall 2016 41

Safety

● Two flaws with correctness/reliability:
○ Success is relative to the strength of the

specification.
○ Severity of a failure is not considered. Some failures

are worse than others.
● Safety is the ability of the software to avoid

hazards.
○ Hazard = any undesirable situation.
○ Relies on a specification of hazards.

■ But is only concerned with avoiding hazards, not
other aspects of correctness.

Gregory Gay CSCE 740 - Fall 2016 42

Robustness

● Correctness and reliability are contingent on
normal operating conditions.

● Software that is “correct” may still fail when
the assumptions of its design are violated.
How it fails matters.

● Software that “gracefully” fails is robust.
○ Consider events that could cause system failure.
○ Decide on an appropriate counter-measure to

ensure graceful degradation of services.

Gregory Gay CSCE 740 - Fall 2016 43

Dependability Property Relations

Gregory Gay CSCE 740 - Fall 2016 44

Six Essentials of Testing
Adapted from Software Testing in the Real World, Edward Kit; Addison-Wesley, 1995

● The quality of the test process determines
the success of the test effort.

● Prevent defect migration by using early
life-cycle testing techniques.
○ Start testing early.

● The time for software testing tools is now.

Gregory Gay CSCE 740 - Fall 2016 45

Six Essentials of Testing

● A real person must take responsibility for
improving the testing process.

● Testing is a professional discipline requiring
trained, skilled people.

● Cultivate a positive team attitude of creative
destruction.

Gregory Gay CSCE 740 - Fall 2016 46

The Key to Effective Testing:
Offering the Right Incentives

Gregory Gay CSCE 740 - Fall 2016 47

We Have Learned

● What is testing?
● Testing terminology and definitions.
● Testing stages include unit testing,

subsystem testing, system testing, and
acceptance testing.

● We want testing to result in systems that are
correct, reliable, safe, and robust.

Gregory Gay CSCE 740 - Fall 2016 48

Next Time

● Structural (White-Box) Testing
○ Using the source code to derive test cases.

● Homework 4
○ Out now. Due November 20.

■ Fix any design issues (will have feedback soon)
■ Add sequence diagrams.
■ Code the system.

○ Any questions?

Gregory Gay CSCE 740 - Fall 2016 49

