
Requirement
Refinement and
Testability
CSCE 740 - Lecture 7 - 09/08/2016

Today’s Goals

● Discuss the importance of writing test cases
for the requirements.
○ Help write better requirements
○ Verification and Validation

● How to come up with those test cases.
● How to refine requirements to be testable.

Gregory Gay CSCE 740 - Fall 2016 2

Requirements Verifiability

“The system should be easy to use by experienced
engineers and should be organized in such a way
that user errors are minimized.”

● Problem is the use of vague terms such as
“errors shall be minimized.”

● The error rate must be quantified for the
requirement to be testable.

Gregory Gay CSCE 740 - Fall 2016 3

Why Should Requirements be
Testable?

● The software might have bugs.
● The requirements might have “bugs”.

○ Can’t automatically check this, but writing a
test requires thinking through the
requirement and specification.

● Tests give a way to argue that the software
does what we promised it would do
(verification).
○ If a requirement is not testable, we cannot

prove that the software fulfills it.

Gregory Gay CSCE 740 - Fall 2016 4

When is software ready
for release?

Basic Answer...

Software is ready for release when you can argue
that it is dependable.
● Correct, reliable, safe, and robust.
● The primary process of making software

dependable (and providing evidence of
dependability) is Verification and Validation.

Gregory Gay CSCE 740 - Fall 2016 6

Verification and Validation

Activities that must be performed to consider
the software “done.”

● Verification: The process of proving that the
software conforms to its specified functional
and non-functional requirements.

● Validation: The process of proving that the
software meets the customer’s true
requirements, needs, and expectations.

Gregory Gay CSCE 740 - Fall 2016 7

Verification and Validation

Barry Boehm, inventor of “software
engineering” describes them as:

● Verification: “Are we building the product
right?”

● Validation: “Are we building the right
product?”

Gregory Gay CSCE 740 - Fall 2016 8

Verification

● Is the implementation consistent with its
specification?
○ “Specification” and “implementation” are roles.

■ Source code and requirement specification.
■ Detailed design and high-level architecture.
■ Test oracle and requirement specification.

● Verification is an experiment.
○ Does the software work under the conditions we

set?
○ We can perform trials, evaluate the software, and

provide evidence for verification.

Gregory Gay CSCE 740 - Fall 2016 9

Validation

● Does the product work in the real world?
○ Does the software fulfill the users’ actual

requirements?
● Not the same as conforming to a specification.

○ If we specify and implement all behaviors related to
two buttons, we can achieve verification.

○ If the user expected a third button, we have not
achieved validation.

Gregory Gay CSCE 740 - Fall 2016 10

Verification and Validation

● Verification
○ Does the software work as intended?

● Validation
○ Does the software meet the needs of your users?
○ This is much harder.

Validation shows that software is useful.
Verification shows that it is dependable. Both are
needed to be ready for release.

Gregory Gay CSCE 740 - Fall 2016 11

Verification and Validation:
Motivation

● Both are important.
○ A well-verified system might not meet the user’s

needs.
○ A system can’t meet the user’s needs unless it is

well-constructed.
● Testing is the primary activity of verification.

Gregory Gay CSCE 740 - Fall 2016 12

Software Testing

● An investigation conducted to provide
information about system quality.

● Analysis of sequences of stimuli and
observations.
○ We create stimuli that the system must react to.
○ We record observations, noting how the system

reacted to the stimuli.
○ We issue judgements on the correctness of of the

sequences observed.

Gregory Gay CSCE 740 - Fall 2016 13

What Goes Into a Test?

● The anatomy of a test case
○ Inputs (test data) to the system.
○ Predicted outputs based on these inputs.
○ Procedure needed to exercise the system.

■ Pre-conditions and set-up steps.
■ Things that we will need to do to gather

data.
■ How the actual output will be compared to

the expected output.

Gregory Gay CSCE 740 - Fall 2016 14

Test Plans

● Plan for how we will test the system.
○ What is being tested (units of code, features).
○ When it will be tested (required stage of completion).
○ How it will be tested (what scenarios do we run?).
○ Where we are testing it (types of environments).
○ Why we are testing it (what purpose does this test

serve?).
○ Who will be responsible for writing test cases

(assign responsibility).

Gregory Gay CSCE 740 - Fall 2016 15

What Does Testing Accomplish?

Your current goal shapes what scenarios the
tests cover:
● Defect Detection: Discover situations where

the behavior of the software is incorrect.
○ Tests tend to reflect extreme usage.

● Verification: Demonstrate to the customer
that the software meets the requirements.
○ Tests tend to reflect “normal” usage.

Gregory Gay CSCE 740 - Fall 2016 16

Requirements-Based Testing

● Process of deriving tests from the
requirement specifications.
○ Typically the baseline technique for designing test

cases. Can begin as part of requirements
specification, and continue through each level of
design and implementation.

○ Basis of verification - builds evidence that the
implementation conforms to its specification.

○ Effective at finding some classes of faults that elude
code-based techniques.
■ i.e., incorrect outcomes and missing functionality

Gregory Gay CSCE 740 - Fall 2015 17

Why Should Requirements be
Testable?

● Requirements are the primary source of
information to judge program behavior.

● Writing tests early:
○ Refines requirements by making them more

testable.
○ Results in fewer faults when the code is

written.
● Requirements-based tests can be used as

evidence of verification.

Gregory Gay CSCE 740 - Fall 2016 18

Typical Requirements

● After a high temperature is detected, an
alarm must be raised quickly.

● Novice users should be able to learn the
interface with little training.

How do we make these requirements
testable?

Gregory Gay CSCE 740 - Fall 2016 19

Test the Requirement

After a high temperature is detected, an alarm
must be raised quickly.

Test Case 1:
● Input:

○ Artificially raise the temperature above the high
temperature threshold.

● Procedure:
○ Measure the time it takes for the alarm to come on.

● Expected Output:
○ The alarm shall be on within 2 seconds.

Gregory Gay CSCE 740 - Fall 2016 20

Test the Requirement

Novice users should be able to learn the interface with little
training.

Test Case 2:
● Input:

○ Identify 10 new users and put them through the
training course (maximum length of 6 hours)

● Procedure:
○ Monitor the work of the users for 10 days after the

training has been completed
● Expected Output:

○ The average error rate over the 10 days shall be
less than 3 entry errors per 8 hours of work.Gregory Gay CSCE 740 - Fall 2016 21

“Fixed” Requirements

● Original: After a high temperature is detected, an
alarm must be raised quickly.

● New: When the temperature rises over the
threshold, the alarm must activate within 2 seconds.

● Original: Novice users should be able to learn the
interface with little training.

● New: New users of the system shall make less than
2 entry mistakes per 8 hours of operation after 6
hours of training.

Gregory Gay CSCE 740 - Fall 2016 22

Detailed is Not Always Testable

1. The user shall be suspended after a number
of invalid attempts to enter the PIN.

Specification:
● This count shall be reset when a successful PIN entry is

completed for the user.
● The default is that the user will never be suspended.
● The valid range is from 0 to 10 attempts.

Problem: “never” is not testable.
(same for “always”)

Gregory Gay CSCE 740 - Fall 2016 23

Tailoring Tests to Requirement
Detail Level

Requirement with minimal detail:
● One person must be able to load the boat on the car

rack.

Requirement with detailed specification:
● The boat must be lighter than 100 lb.
● The boat must have handles to help one person lift it.
● The car rack must be padded so the boat can easily

slide into the rack.
● ...

Not written for engineers, so requirements not
as detailed. Tests will be more subjective.

User Study: Can 9/10 users load the
boat without help.

More detailed, so tests should also be more objective. Can
define absolute scales, exact inspections, etc.

Gregory Gay CSCE 740 - Fall 2016 24

Activity: Patient Management
System

Consider related requirements for a patient
management system:
● If a patient is known to be allergic to any

particular medication, prescription of that
medication shall result in a warning message
being issued to the system user.

● If a prescriber chooses to ignore an allergy
warning, they shall provide a reason why this
has been ignored.

Gregory Gay CSCE 740 - Fall 2016 25

Solution: Patient Management
System Tests

Some possible tests include:
● Set up a patient record with no known allergies. Prescribe

medication for allergies that are known to exist. Check that a
warning message is not issued by the system.

● Set up a patient record with a known allergy. Prescribe the
medication they are allergic to, and check that a warning is issued.

● Set up a patient record where allergies to two or more drugs are
recorded. Prescribe both separately and check that the correct
warning is issued for each.

● Prescribe both drugs at once and check that both warnings are
issued.

● Prescribe a drug that issues a warning and overrule the warning.
Check that the system requires the user to provide information
explaining why the warning was overruled.

Gregory Gay CSCE 740 - Fall 2016 26

How Many Tests Do You Need?

Testing a requirement does not mean writing a
single test.
● You normally have to write several tests to

ensure that the requirement holds.
○ What are the different conditions that the

requirement must hold under?
● Maintain traceability links from tests to the

requirements they cover.

Gregory Gay CSCE 740 - Fall 2016 27

Scenario Testing

One method of deriving tests is to use
scenarios to develop test cases for the
system.
● Stories that describe one way in which a

system might be used.
○ Use case descriptions, user stories, sequences of

user interactions.
● Stories should be complex and credible.
● Should be easy to evaluate.

Gregory Gay CSCE 740 - Fall 2016 28

Scenario Example
For the patient management system:
Kate is a nurse. One of her responsibilities is to visit patients at home to check
on the progress of their treatment. On a day for home visits, Kate logs into the
PMS and uses it to print her schedule of home visits for that day, along with
summary information about the patients to be visited. She requests that the
records for these patients be downloaded to her tablet. She is prompted for her
password to encrypt the records for the tablet.
One of the patients, Jim, is being treated for depression. Jim feels that the
medicine is keeping him awake at night. Kate looks up Jim’s record and is
prompted for her key phrase to decrypt the record. She checks the drug
prescribed and queries its side effects. She notes the problem in Jim’s record
and enters a prompt to call him when she gets back to the office to schedule an
appointment with a physician. The system re-encrypts Jim’s record.
After finishing her consultations, Kate uploads her records to the database. The
system generates a call list for Kate of those patients who need to schedule a
follow-up appointment.

Gregory Gay CSCE 740 - Fall 2016 29

Patient System - Features Tested

This single scenario would test:
● Authentication
● Downloading to a mobile device and uploading

changes
● Home visit scheduling
● Encryption and decryption of patient records on

a mobile device
● Record retrieval and modification
● Links with drug database
● System for call prompting

Gregory Gay CSCE 740 - Fall 2016 30

Outcomes of Scenario Testing

● Tester can take scenario and vary the inputs
to test different outcomes.

● Each scenario covers multiple requirements,
and also ensures that combinations of
requirements work correctly.

● Warning -
○ Traceability is difficult. Need to maintain careful links

from scenarios to requirements.
○ Need to ensure that all outcomes of software

features are tested.

Gregory Gay CSCE 740 - Fall 2016 31

A Model of Testing

Requirement Specification

Test Cases

Gregory Gay CSCE 740 - Fall 2016 32

● Where we’re at:
○ “Set up a patient record with no

known allergies. Prescribe
medication for allergies that are
known to exist. Check that a
warning message is not issued by
the system.”

○ Generic scenarios that can be
used as the basis for test cases.

● We need concrete test cases
that can be run.

?

Partitioning

Requirement Specification

Test Cases

?

● Functional testing is based
on the idea of partitioning.
○ You can’t actually test individual

requirements in isolation.
○ First, we need to partition the

specification and software into
features that can be tested.

○ Not all inputs have the same
effect.

○ We can partition the outputs of a
feature into the possible
outcomes.
■ and the inputs, by what

outcomes they cause (or
other potential groupings).

Gregory Gay CSCE 740 - Fall 2016 33

Creating Requirements-Based Tests

Write Testable
Specifications

Identify
Independently

Testable Features

Identify
Representative

Input Values

Generate Test Case
Specifications

Generate Test
Cases

Produce clear, detailed, and
testable requirements.

Figure out what functions can be
tested in (relative) isolation.

What are the outcomes of the
feature, and which input classes

will trigger them?

Identify abstract
classes of test cases.

Instantiate concrete
input/output pairs.

Gregory Gay CSCE 740 - Fall 2016 34

Independently Testable Feature

● Requirements are difficult to test in isolation.
However, the system can usually be
decomposed into the functions it provides.

● An independently testable feature is a
well-defined function that can be tested in
(relative) isolation.

● Identified to “divide and conquer” the
complexity of functionality.

Gregory Gay CSCE 740 - Fall 2016 35

Units and Features

● Executable tests are typically written in
terms of blocks of code (small “units” that
can be executed).
○ Until we have code, we do not know what the units

are.
● An independently testable feature is a

capability of the software.
○ May not correspond to any one unit of code.
○ Can be at the class, subsystem, or system level.

Gregory Gay CSCE 740 - Fall 2016 36

Features and Parameters

Tests for features must be described in terms
of all of the parameters and environmental
factors that influence the feature’s execution.
● What are the inputs to that feature?

○ User registration on a website might take in:
■ (firstName, lastName, dateOfBirth, eMail)

● Consider implicit environmental factors.
○ Registration also requires a user database.

■ The existence and contents of that database influence
execution.

Gregory Gay CSCE 740 - Fall 2016 37

Parameter Characteristics

The key to identifying tests is in understanding
how the parameters are used by the feature.
● Type information is helpful.

○ firstName is a string, the database contains
UserRecord structs.

● … but context is important.
○ If the database already contains an entry for that

combination of fields, registration should be rejected.
○ dateOfBirth is a collection of three integers, but

those integers are not used for any arithmetic
operations.

Gregory Gay CSCE 740 - Fall 2016 38

Examples

Class Registration System
What are some independently testable
features?

● Add class
● Drop class
● Modify grading scale
● Change number of credits
● Graphical interface of registration page

Gregory Gay CSCE 740 - Fall 2016 39

Examples

Adding a class
What are the parameters?

● Course number to add
● Grading basis
● Student record
● What about a course database? Student

record database?

Gregory Gay CSCE 740 - Fall 2016 40

Where We Are At...

Write Testable
Specifications

Identify
Independently

Testable Features

Identify
Representative

Input Values

Generate Test Case
Specifications

Generate Test
Cases

Produce clear, detailed, and testable
requirements.

Figure out what functions can be
tested in (relative) isolation.

Gregory Gay CSCE 740 - Fall 2016 41

Next Class

Key Points

● Do yourself and the testing group a favor:
develop test cases for each requirement.

● If the requirement cannot be tested, you
most likely have a bad requirement.
○ Rewrite it so it is testable.
○ Remove the requirement if it can’t be rewritten.
○ Point out why it is an unstable requirement.

● Your requirements and testing effort will be
greatly improved!

Gregory Gay CSCE 740 - Fall 2015 42

Next Time

● Coming up with concrete
requirements-based test cases.

● Reading:
○ Sommerville, chapter 8

■ Introduction, section 8.3.1, 8.3.2

● Homework: Draft requirements due soon!

Gregory Gay CSCE 740 - Fall 2016 43

