
Agile Development
Processes
CSCE 740 - Lecture 3 - 08/31/2017

Common Practice: Code & Fix

Sit down, write out the code, and fix problems
as they occur. No formal structure to
development.

What is wrong with this scenario?
● Often results in a loop of bug fixes that

introduce new bugs.
○ Ties up developers.

● Hard to track development progress.
● Introduces unnecessary risk.

2

We Need A Process

A formal process structures the development of
the software into a series of visible phases.

As a result:
● We have control over the project.

○ Visibility into development progress.
○ Knowledge of when to move forward.

● Developers are more efficient.
● Risks can be anticipated and mitigated.

3

The Waterfall Model

Requirements
Definition

● Adaptation of
engineering process to
software.

● Only move on to
another phase when
the current phase is
complete.

System Design

Implementation
and Unit Testing

Integration and
System Testing

Release and
Maintenance

4

The Waterfall Model

● Spending more time on earlier phases
prevents problems from being discovered
later.

● Brings discipline and structure.
● Clear understanding of project progress.
● Places emphasis on documentation.

Plan-Driven Adaptable
 Benefits of Waterfall?

Gregory Gay CSCE 740 - Fall 2016 5 5

From The “Creator” Of Waterfall...

“I believe in the concept, but the implementation
is risky and invites failure.”
- Winston Royce

Why is the waterfall model risky?
● Inflexible model that does not accommodate change.

○ Hard to respond to unexpected risk.
● In practice, you need to return to earlier phases as

details change.
○ You rarely know your requirements that early.
○ Implementation details often emerge only during

implementation.
6

Enter… Agile Development

● Introduce “agile” software development
processes
○ Iterative and Incremental Processes
○ The Agile Manifesto
○ The Scrum Process

● eXtreme Programming
○ Not a single process, but a set of agile principles that

can guide development.

7

Work Partitioning: Waterfall

Feature 1

Feature 2

Feature 3

Design Code Unit Test Integrate

8

Work Partitioning: Incremental

Feature 1

Feature 2

Feature 3

Design Code Unit Test Integrate

9

The Incremental Model
Requirements

Definition

● Like waterfall, we only move on to
another phase when the current
phase is complete.

● Unlike waterfall, we produce
progressively more complete
builds of a system.

Feature Design

Implementation
and Unit
Testing

Integration and
System Testing

A

A

B

A

B C

10

The Incremental Model

What are the advantages of incremental development?

What are some of the disadvantages?

● Customers can start using the system earlier.
○ and feedback can be obtained more frequently.

● Slower integration of features allows easier testing of individual
features and feature interactions.

● If time/budget runs out, a partial product can still be released.

● Development is still rigid for each individual feature.
○ It is still hard to respond to feedback, as you may have to throw

out all of the work for a particular feature.
● Still need to invest up-front planning for the “complete” system.

11

The Iterative/Evolutionary Model

Initial
Concept Analyze

Requirements
Design

Iteration Implement
and Test
Iteration

Deliver Latest
Version

Elicit
Customer
Feedback

Done?
Yes

No

12

Wait… Aren’t incremental and
iterative the same thing?

● Incremental: Add new features to build a progressively
more complete system over time.

● Iterative: Deliver a series of progressively more
complete prototypes over time.

● Aren’t these the same thing?

Incremental: Writing an essay one “perfect” sentence at a
time.
Iterative: Writing a complete rough draft, then improving it
through a complete revision.

13

The Iterative Model

What are the advantages of iterative development?

What are some of the disadvantages?

● Frequent customer feedback can keep the project on track.
○ We throw away more work short-term, but far less long-term.

● Requirements and design can more easily be revised.
● Natural fit to how software is built - develop something “good

enough” that can be revised over time.

● “Good enough” is very risky if there is software problems can result
in harm to humans or their operating environment.

● Frequent releases often results in rushed releases.
○ Building on bad foundations results in a bad final product.

14

The Agile Manifesto

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

15

Agile Principles

● Satisfy the customer through early and continuous
delivery of valuable software.

● Welcome changing requirements, even late in
development. Agile processes harness change for the
customer's competitive advantage.

● Deliver working software frequently with a preference to
the shorter timescale.

● Business people and developers must work together
daily throughout the project.

16

Agile Principles (2)

● Build projects around motivated individuals. Give them
the environment and support they need, and trust them
to get the job done.

● The most efficient and effective method of conveying
information to and within a development team is
face-to-face conversation.

● Working software is the primary measure of progress.
● Agile processes promote sustainable development. The

sponsors, developers, and users should be able to
maintain a constant pace indefinitely.

17

Agile Principles (3)

● Continuous attention to technical excellence
and good design enhances agility.

● Simplicity - the art of maximizing the amount
of work not done - is essential.

● The best architectures, requirements, and
designs emerge from self-organizing teams.

● At regular intervals, the team reflects on how
to become more effective, then tunes and
adjusts its behavior accordingly.

18

The Agile Model

Product
Requirements

Req 3

Req 1

Req 4

Req 2

Priority

Requirements
Scheduled for

Iteration
New Software

Release

Iteration

Agile is not ad-hoc. An
iteration should have some
kind of structure.

During Iteration

Analyze
Requirements

Design
Iteration Implement

and Test
Iteration

19

The Scrum Model

● Bring the development
team together to discuss
problems as a team.
○ Then send them out

to accomplish their
individual goals.

● Individuals can define
their own process.
○ But there is an

overall structure,
based on roles and
meetings.

20

The Scrum Model

Product
Backlog

(Requirements)

Req 3

Req 1

Req 4

Req 2

Priority

Sprint Backlog
(Requirements

to be
Implemented)

New Software
Release

Sprint

Sprint
Planning
Meeting

(Kick-Off)

Sprint
Wrap-Up
Meeting

Scrum
Meeting
(Stand-Up)

Work
Period

21

Scrum Roles

● The Development Team
○ Usually small, 3-9 people.

● The Product Owner
○ The “voice” of the customer.
○ Presents iterations to customers and communicates

feedback to the team.
○ Maintains and prioritizes the requirement backlog

● The Scrum Master
○ The team “coach”.
○ Removing impediments to success.
○ Facilitating communication and meetings.
○ Mediating disputes.

22

Daily Scrum Meetings

● A daily 15-minute meeting in which all
participants are standing.

● Each person answers three questions:
○ What did you complete since the last scrum?
○ What will you complete before the next scrum?
○ What, if any, blocking issues (impediments to

progress) do you need to resolve?

23

The Scrum Model

What are the advantages of the scrum process?

What are some of the disadvantages?

● (see iterative model, but also...)
● Very fast response to requirements change.
● Team members can choose how they approach their development

responsibilities, as long as they still meet team goals.

● Requirements are unstable, and are not given enough importance.
● Often results in a lack of a design document or documentation.
● Relies on a good scrum master to keep meetings productive, and

relies on the communication skills of the team members.

24

When to Choose Agile

Adaptable
(close to
center)

Plan-Driven
 (far from
 center)

Personnel
(% Junior, % Senior)

Criticality
(Loss due to defects)

Team Size
(Number of Personnel)

Culture
(% Thrive on Chaos)

Requirements
Change
(% per month)

25

Exercise

Given the following details about the project:
● Product installed on customer machines (not web-based)
● 20-year minimum product life
● Pressure to release early and update frequently
● Experienced developers
● Globally-distributed organization of about 300 developers
● Outages cost customers > $300K per hour
● High levels of technology and requirements uncertainty

What process would you select and why?
(you can combine elements of processes if you want)

26

Recap - Reasons for Process

We want a process because we are afraid that:

● The project will produce the wrong product.
● The project will produce a bad product.
● The project will be late.
● We all have to work 80 hour weeks.
● We will have to cut features.
● We will not have any fun working.

27

eXtreme Programming

Set of practices and principles to guide teams in
the face of changing requirements.
● Enables Adaptability

○ in the business, technology, and team.
● Ensures Predictability

○ in plans and schedules, incorporating feedback and
project tuning.

● Offers Options
○ Change direction or priorities at any time.

● Maintains Humanity
○ Focus on the idea of sufficiency.

28

XP Rules

There are rules you must following during
development regarding:
● Planning
● Managing
● Designing
● Coding
● Testing

29

XP Rules - Planning

● User stories must be written.
○ Informal usage scenarios used to as requirements,

to estimate implementation time, and to create
acceptance test cases.

● Make frequent, small releases.
○ Tested, working software every two weeks.

● Divide the project into iterations.
○ Allows progress tracking.
○ Break stories into programming tasks. Do not put too

many tasks into one iteration, instead reformulate
iteration plan.

30

XP Rules - Managing

● Give an open, dedicated workspace.
○ Removes any barriers to communication.
○ Encourages people to work together, and increases

community ownership of all project code.
● Set a sustainable pace.

○ If an iteration will not be finished on-schedule,
remove tasks and reduce the scope.

● Vary developer tasks.
○ Avoid knowledge bottlenecks with well-rounded

developers.
● Fix your process when it breaks.

31

XP Rules - Designing

● Simplicity is key.
○ Testable, understandable, browsable, and

explainable.
● Create simple programs to prototype

potential solutions.
● Never add functionality early.

○ This clutters up the system, and might end up being
useless once requirements change.

● Refactor mercilessly.
○ Remove redundancy, eliminate unused functionality

and improve obsolete designs.
32

XP Rules - Coding

● The customer should always be available.
○ Considered a member of the team.
○ Provides feedback, detailed requirements for

programming tasks, help with test data.
● Always write tests before coding.

○ Solidifies requirements, gives developer a chance to
think through their design.

● Program in pairs.
○ More eyes on the code will result in better code.

● Continuously integrate code into the project.
○ Everybody should be working with the latest code.

33

XP Rules - Testing

● All code must have unit tests.
○ Untested code is not acceptable for release.
○ Tests stored in repository along with code.
○ Tests enable refactoring and integration.

● All code must pass unit testing before it can
be released.

● When a bug is found, create tests to prevent
it from coming back.

● Create acceptance tests from user stories.
○ Run them often and publish the score.

34

Why is it Extreme?

Because we take good practices to extreme
levels (turn the knob to 11):
● If code reviews are good, review

code all the time (pair programming).
● If testing is good, test all the time

(unit testing) - even the customers
(acceptance testing).

● If design is good, make it part of
daily business (refactoring).

● If simplicity is good, always leave
the system with the simplest design that
supports functionality

35

We Have Learned

● Processes give us control over development, focus
developers, and the ability to mitigate risks.

● The waterfall model is plan-driven, good for projects
with costly consequences. Focus on one, near perfect
release.

● Agile methods (scrum, iterative) allow rapid changes to
respond to customers’ needs. Focus on rapid, “good
enough” releases.

● eXtreme Programming advocates a set of development
practices that may result in better software.

36

Next Time

● Requirements
○ The fine art of deciding what the $%#$ to build.

● Reading: Sommerville, chapter 4.

● Homework:
○ Get team selection in.

37

