CSCE 747 - Assignment 4:
Unit and Fault-Based Testing

Due Date: Tuesday, April 5, 11:59 PM

This assignment is worth a total of 100 points. You may discuss these problems in your teams
and turn in a single submission for the team, in zip format, on Moodle. Answers must be original
and not copied from online sources.

Problem 1 (55 Points)

Software engineers love caffeine - especially during 8:30 AM classes - so we are planning to
install a new coffee maker in the classroom. Fortunately, the CSC department at NCSU has
developed control software for a shiny new CoffeeMaker, and has provided us with that code.
We just have to test it.

You will be working with the JUnit testing framework to create unit test cases, find bugs and
fix the CoffeeMaker code from NCSU’s OpenSeminar project repository (thank you to

the authors!). The example includes requirements, design and code with some seeded faults.
For this exercise you are required to create unit test cases for all the application classes with
JUnit, execute those against the code, detect, and fix the faults (as many as possible).

The goal for your unit tests is to achieve statement (aka: line) of the code (coverage must be
measured with a tool, we recommend Emma, but you may use any approved tool). If you find
faults (by other means) that are not detected by your tests, describe the additional tests that you
would need to detect those faults. If you find portions of the code that cannot be covered by a
test case, explain why those elements are not covered.

Your submission should include a test report that describes the tests (with a descriptive name
and a short explanation), list of defects found, your recommended fix for each, the test results
after the fix, and a coverage report. You should also turn in an electronic archive of your tests
with a concise set of instructions on how to set-up and execute your tests on the original
CoffeeMaker example.

Relevant links:
CoffeeMaker example - http://open.ncsu.edu/se/tutorials/coffee_maker
jUnit - http://junit.org/
(We recommend using a Java IDE - such as Eclipse - that integrates JUnit execution
tools into the development environment.)
Emma (code coverage measurement) - http://emma.sourceforge.net/ (command line)
http://www.eclemma.org/ (Eclipse plug-in)



http://open.ncsu.edu/se/tutorials/coffee_maker
http://junit.org/
http://emma.sourceforge.net/
http://www.eclemma.org/

Points will be divided up as follows: 20 points for test design, 10 points for detecting faults, 15
points for the suggested fixes to the code, and 10 points for test execution and coverage
reports.

Problem 2 (45 Points)

1. Generate invalid, valid-but-not-useful, useful, equivalent, and non-equivalent mutants for
methods of your choice in the CoffeeMaker code (before you apply any of your fixes).
You do not have to use the same methods for all mutant categories. Apply at least one
mutation operator from each of the three categories in Figure 16.2 in the textbook. (20
Points)

2. Assess your test suite that you created for Problem 1, with respect to the set of mutants
that you derived - Are you able to kill all the non-equivalent mutants with your test suite?
If not, describe which non-equivalent mutants cannot be differentiated from the original
code using your test suite, and why they cannot be differentiated. Write additional tests
that can kill those non-equivalent mutants (15 Points)

3. ldentify a minimal subset of tests from your test suite that is sufficient to kill all of the
non-equivalent mutants. (10 Points)



