
Testing Close to and
Post-Release:
System, Acceptance, and
Regression Testing

CSCE 747 - Lecture 23 - 04/05/2016

The V-Model of Development

Requirements
Elicitation

System
Specification

Architectural
Design

Detailed
Design

Unit
Development
and Testing

Subsystem
Integration

Testing

System
Integration

Testing

Acceptance
Testing

Operation and
Maintenance

Acceptance
Test Plan

System
Integration
Test Plan

Gregory Gay CSCE 747 - Spring 2016 2

Regression
Test Plan

“Final” Testing Stages

● All concerned with behavior of the system as
a whole, but for different purposes.

● System Testing
○ Verification of the completed system against the

specifications.
● Acceptance Testing

○ Validation against the user’s expectations.
● Regression Testing

○ Ensuring that the system continues to work as
expected when it evolves.

Gregory Gay CSCE 747 - Spring 2016 3

Verification and Validation

Activities that must be performed to consider
the software “done.”

● Verification: The process of proving that the
software conforms to its specified functional
and non-functional requirements.

● Validation: The process of proving that the
software meets the customer’s true
requirements, needs, and expectations.

Gregory Gay CSCE 747 - Spring 2016 4

System and Acceptance Testing

● System Testing
○ Checks system against specification.
○ Performed by developers and professional testers.
○ Verifies correctness and completion of the product.

● Acceptance Testing
○ Checks system against user needs.
○ Performed by customers, with developer supervision
○ Validates usefulness and satisfaction with the

product.

Gregory Gay CSCE 747 - Spring 2016 5

Regression Testing

● Systems continue to evolve post-release.
○ Patches to newly-discovered faults.
○ New features.
○ Adaptations to new hardware/software

dependencies (OS).
● Rechecks test cases passed by previous

production systems.
● Guards against unintended changes.

Gregory Gay CSCE 747 - Spring 2016 5

System Testing

Unit Testing

● Test cases derived from module
specifications in design documents.

● Requires complex scaffolding to execute
incomplete dependencies (stubs), simulate
execution environment (drivers), and judge
test results (oracles).

● Focus is on behavior of individual modules.

Gregory Gay CSCE 747 - Spring 2016 8

Integration/Subsystem Testing

● Test cases derived from architecture and
design specifications.

● Requires scaffolding, but can reuse some
from unit testing. Fewer stubs and drivers
required, as classes are tested together.
○ (depends on integration order and architecture)

● Focus is on module integration and
interactions.

Gregory Gay CSCE 747 - Spring 2016 9

System Testing

● Test cases derived from requirement
specification.
○ Requires no detail of the code.
○ Tests should be designed before code is written.

● Does not need scaffolding, except for
oracles. Sometimes operates in a simulated
environment.

● Focus on system functionality and further
integration errors.

Gregory Gay CSCE 747 - Spring 2016 10

System Testing

● “Last hurdle” before releasing a system.
○ Final chance to find faults.
○ If all tests pass, the system is “free of faults.”

● Test cases should be developed
independently of unit and subsystem tests.
○ Design errors often infect unit test design.
○ Introduces a source of blindness.

● System tests do not require details of the
source code.
○ And are able to detect design flaws as a result.

Gregory Gay CSCE 747 - Spring 2016 11

Who Should Test?

Developer
● Understands the

system, but…
● Tends to test gently and

is driven by deadlines.

Independent Tester
● Needs to learn the

system, but…
● Will attempt to break it.
● Better able to focus on

quality.

Gregory Gay CSCE 747 - Spring 2016 12

System Testing

Systems are developed as interacting
subsystems. Once units and subsystems are
tested, the combined system must be tested.
● Advice about interface testing still important here (you

interact with a system through some interface).
● Two important differences from subsystem testing:

○ Reusable components (off-the-shelf systems) need
to be integrated with the newly-developed
components.

○ Components developed by different team members
or groups need to be integrated.

Gregory Gay CSCE 747 - Spring 2016 13

Non-functional Properties

● Properties desired of the final system not
related to functional correctness (f(a) = b)
must be tested at the system level.
○ Performance, reliability, safety, security.

● Requires ability to measure and assess
fulfillment of the property.
○ Depends on both the system and its environment

and use.
○ In some cases, standard measurements exist.
○ In others, more difficult to capture the requirement in

a test.
Gregory Gay CSCE 747 - Spring 2016 14

Non-functional Properties

● US HIPAA regulations on software using
medical records:
○ “A covered entity must reasonably safeguard

protected health information from any intentional or
unintentional use or disclosure that is in violation of
the standards, implementation specifications, or
other requirements of this subpart.”

● Hard to measure satisfaction. Requires
context:
○ Personnel that have access, how unauthorized

personnel are prevented from gaining access.
Gregory Gay CSCE 747 - Spring 2016 15

Non-functional Properties

● Properties must be defined in context.
○ Performance standards must consider the operating

environment.
○ Under what circumstances must a particular

threshold be met?
■ Real-time system must meet computation and

response deadlines.
■ Requires definition of event frequency and

minimum input arrival times.
● Generally cannot use testing to show that a

property is met in all configurations.
Gregory Gay CSCE 747 - Spring 2016 16

Non-functional Properties

● Not all properties are amenable to traditional
testing techniques.

● Inspection and analysis can help with some.
● Security properties are assessed by teams

of users that attempt to gain access.
○ Security is a property of a larger system and

environment that one piece of software is a small
part of.

○ Consider safety of the whole system, and how this
piece of software fits into that environment. Look for
vulnerabilities in each piece of software.

Gregory Gay CSCE 747 - Spring 2016 17

Acceptance Testing

Acceptance Testing

Once the system is internally tested, it should
be placed in the hands of users for feedback.
● Users must ultimately approve the system.
● Many faults do not emerge until the system

is used in the wild.
○ Alternative operating environments.
○ More eyes on the system.
○ Wide variety of usage types.

● Acceptance testing allows users to try the
system under controlled conditions.

Gregory Gay CSCE 747 - Spring 2016 19

User-Based Testing Types

Three types of user-based testing:
● Alpha Testing

○ A small group of users work closely with
development team to test the software.

● Beta Testing
○ A release of the software is made available to a

larger group of interested users.
● Acceptance Testing

○ Customers decide whether or not the system is
ready to be released.

Gregory Gay CSCE 747 - Spring 2016 20

Alpha Testing

● Users and developers work together.
○ Users can identify problems not apparent to the

development team.
■ Developers work from requirements, users have

their own expectations.
● Takes place under controlled conditions.

○ Software is usually incomplete or untested.
● “Power users” and customers who want

early information about system features.
○ Agile processes advocate for “customer as a team

member”
Gregory Gay CSCE 747 - Spring 2016 21

Beta Testing

● Early build made available to a larger group
of volunteers and customers.

● Software is used under uncontrolled
conditions, hardware configurations.
○ Important if the system will be sold to any customer.
○ Discovers interaction problems.

● Can be a form of marketing.
● Should not replace traditional testing.

Gregory Gay CSCE 747 - Spring 2016 22

Acceptance Testing

● Formal validation activity between developer
and customer.

● Software is taken to a group of users that try
a set of scenarios under supervision.
○ Scenarios mirror the typical system use cases.
○ Users provide feedback and decide whether the

software is acceptable for each scenario.
● Users ultimately decide whether the software

is ready for release.
○ Developers may negotiate with users.

Gregory Gay CSCE 747 - Spring 2016 23

Acceptance Testing Stages

● Define acceptance criteria
○ Work with customers to define how validation will be

conducted, and the conditions that will determine
acceptance.

● Plan acceptance testing
○ Decide resources, time, and budget for acceptance

testing. Establish a schedule. Define order that features
should be tested. Define risks to testing process.

● Derive acceptance tests.
○ Design tests to check whether or not the system is

acceptable. Test both functional and non-functional
characteristics of the system.

Gregory Gay CSCE 747 - Spring 2016 24

Acceptance Testing Stages

● Run acceptance tests
○ Users complete the set of tests. Should take place in

the same environment that they will use the
software. Some training may be required.

● Negotiate test results
○ It is unlikely that all of the tests will pass the first

time. Developer and customer negotiate to decide if
the system is good enough or if it needs more work.

● Reject or accept the system
○ Developers and customer must meet to decide

whether the system is ready to be released.
Gregory Gay CSCE 747 - Spring 2016 25

Qualitative Process

● Results may vary based on the user
surveyed and environmental factors.
○ Software may need to be accepted regardless of

users’ preferences if deadline is strict.
○ May be used as an “excuse” to reject a project.

● Users should be “typical”
○ Usually interested volunteers.
○ How users interact with a beta may not match the

real system.
○ May not catch faults that normal users will see.

Gregory Gay CSCE 747 - Spring 2016 26

Usability

● A usable product is quickly learned, allows
users to work efficiently, and can be used
without frustration.
○ Must be evaluated through user-based testing.
○ Objective criteria:

■ Time and number of operations to perform tasks.
■ Frequency of user error.

○ Subjective criteria:
■ Satisfaction of users.

○ Can be evaluated throughout lifecycle.

Gregory Gay CSCE 747 - Spring 2016 27

Usability Testing Steps

● Inspecting specifications:
○ Checklists based on prior experience.

● Testing early prototypes:
○ Bring in end users to:

■ Explore mental models (exploratory testing)
■ Evaluate alternatives (comparison testing)
■ Validate usability.

○ May involve mockup GUIs, not working software.
● System and Acceptance Testing:

○ Evaluate incremental builds, compare against
competitors, check against compatibility guidelines.

Gregory Gay CSCE 747 - Spring 2016 28

Exploratory Testing

● Explore the mental model of end users.
○ Early in design stage, ask users how they would like

to interact with the system.
● Look for common answers from users.

○ If conflicts, try to combine elements of answers.
○ Larger sample sizes will yield better results.
○ Consider all groups of stakeholders.

■ Some stakeholders will have different usage
patterns from others.

Gregory Gay CSCE 747 - Spring 2016 29

Validation Testing

● Used to assess overall usability.
○ Identifies difficulties and obstacles encountered

while using the system.
○ Measures error rate, clicks/time to perform a task.

● Preparation phase:
○ Define objectives for the session, identify items to be

tested, select population, plan actions.
● Execution phase:

○ Users monitored as they execute planned actions.
● Analysis phase:

○ Results evaluated, software changes planned.

Gregory Gay CSCE 747 - Spring 2016 30

Validation Testing

● Activities should be based on typical use
cases of expected features.
○ Intent is to ensure “normal use” is optimal, not to

search for new faults.
● Users should perform tasks independently.

○ Actions are recorded through tracking software.
○ Comments and impressions are collected with post-

activity questionnaires.
● Consider accessibility needs.

○ Font size, color choices, audio guidance.

Gregory Gay CSCE 747 - Spring 2016 31

Regression Testing

Software Lifecycle

Specification Implementation

Verification &
ValidationOperation

R1R2R3R4

Initial
Development

Evolution

Servicing

Phaseout

Gregory Gay CSCE 747 - Spring 2016 33

Software Maintenance

● Fault Repairs
○ Changes made in order to correct coding, design, or

requirements errors.

● Environmental Adaptations
○ Changes made to accommodate changes to the

hardware, OS platform, or external systems.

● Functionality Addition
○ New features are added to the system to meet new

user requirements.

Gregory Gay CSCE 747 - Spring 2016 34

Maintenance is Hard

It is harder to maintain than to write new code.
● Must understand code written by another

developer, or code that you wrote long ago.
● Creates a “house of cards” effect.
● Developers tend to prioritize new

development.

New code must be tested. Existing code must
also be retested.

Gregory Gay CSCE 747 - Spring 2016 35

System Regression

● System evolution may change existing
functionality in unforeseen ways.

● When a new version no longer works as
expected, it regresses with respect to tested
functionality.
○ A basic quality requirement is that new versions are

non-regressive - if we tested it and it works, it should
continue to work.

● Regression testing is used to detect
regressive code.

Gregory Gay CSCE 747 - Spring 2016 36

Regression Testing

● Basic idea: when changes have been made,
re-execute tests that were used to verify the
original code.

● Not as simple as it sounds:
○ When do you execute regression tests?

■ On check-in? Before patch is publicly released?
○ Can you afford to execute all tests?

■ The number will grow as the system expands.
○ Can you actually execute all tests?

■ Do you need to?
■ Are some tests obsolete?

Gregory Gay CSCE 747 - Spring 2016 37

Test Case Maintenance

● Test suites must be maintained over time.
● Obsolete tests should be removed.

○ Tests involving requirements, features, classes, or
interfaces that no longer exist or have been
modified.

● Redundant tests should be identified.
○ Tests that cover the same structural elements, input

partitions, other test goals.
○ May be introduced to test changed code, or by

concurrently-working testers.
○ Can still be executed, but may not be needed.

Gregory Gay CSCE 747 - Spring 2016 38

Regression Test Selection

● The number of tests to reexecute may be
very large (and grows over time).

● Not all tests need to be re-executed.
○ Changes only affect part of the system.
○ Regression testing costs can be reduced by

prioritizing the set of test cases.
○ Select a subset of tests relevant to the changes

introduced. Weigh those tests higher than those
unlikely to expose faults.
■ Techniques based on code and specifications.

○ Choose a cut-off based on testing budget.

Gregory Gay CSCE 747 - Spring 2016 39

Code-Based Test Selection

● Select a test case for execution if it
exercises a portion of the code modified (or
likely to be affected by a change).

● Control-based selection:
○ Maintain a record of the CFG blocks executed by

each test.
○ Compare the structure of the old and new versions.
○ Tests that exercise added, modified, or deleted

elements are prioritized.
○ Can be based on control or data flow.

Gregory Gay CSCE 747 - Spring 2016 40

Example

Version 1:

} else if (c == ‘%’){

int digit_high = ..

}

 …

++dptr;

++eptr;

}

Gregory Gay CSCE 747 - Spring 2016 41

Version 2:

} else if (c == ‘%’){

if(!*(eptr + 1) && *(eptr + 2)){

ok = 1; return;

}

int digit_high = ..

}

 …
if(! isascii(*dptr)){

*dptr = ‘?’; ok=1;

}

++dptr;

++eptr;

}

Example

Gregory Gay CSCE 747 - Spring 2016 42

A

B M

C

D E

F X: if(!*(eptr
+ 1) && *
(eptr + 2)){

Y: ok = 1;
return;

G
H

I

W: if(! isascii
(*dptr)){

Z: *dptr =
‘?’; ok=1;

L

Example

Gregory Gay CSCE 747 - Spring 2016 43

A
B M
C
D E

F X Y

G H

I

W

Z
L

ID Input Path

1 “ “ A B M

2 “test+case%1Dadequacy” A B C D F L … B M

3 “adequate+test%
0Dexecution%7U”

A B C D F L … B M

4 “%3D” A B C D G H L B M

5 “%A” A B C D G I L B M

6 “a+b” A B C D F L B C E L B
C D F L B M

7 “test” A B C D F L B C D F L
B C D F L B M

8 “+%0D+%4J” A B C E L B C D G I L
… B M

9 “first+test%9Ktest%K9” A B C D F L … B M

Base case: Re-execute all tests
that pass through node D and
proceed towards G, and all
tests that reach node L.

Corrective Changes Only:
Ignores new features, and only
considers corrective patches.

Data-Based Test Selection

● New code can introduce new DU pairs and
remove existing pairs.

● Re-execute test cases that execute DU pairs
in the original program that were deleted or
modified in the revised program.
○ Also select test cases that execute a conditional

statements modified in the revision.
■ Changed predicates can affect DU paths.

Gregory Gay CSCE 747 - Spring 2016 44

Example

Gregory Gay CSCE 747 - Spring 2016 45

A
B M
C
D E

F X Y

G H

I

W

Z
L

Variable Definitions Uses

*eptr X

eptr X

*dptr Z W

dptr Z, W

ok Y, Z

Selective Execution

● When a regression suite is too large, we
must reduce the number of tests executed.

● Techniques predict “usefulness” of tests:
○ Elements covered.
○ History of effectiveness.

● High priority tests will be selected more often
than low priority tests.
○ Eventually, all tests will be selected.
○ However, at varying frequencies.
○ Efficient rotation in which the cases most likely to

reveal faults will be selected more often.

Gregory Gay CSCE 747 - Spring 2016 46

Selective Execution Schema

● Execution History Schema:
○ Simple strategy.
○ Recently executed tests are given low priority.
○ Cases not recently executed are given high priority.
○ Often used to weight along with correlation to

changed elements.
● Fault-Revealing Priority Schema:

○ Test cases that have recently revealed faults are
prioritized.

○ Faults are not evenly distributed, but tend to cluster
around particular functionality/units in the code.

○ Not all faults may have been fixed.
Gregory Gay CSCE 747 - Spring 2016 47

Selective Execution Schema

● Structural Priority Schema:
○ Weight tests by the number of elements covered.

■ Statements, branches, conditions, etc.
○ Weight each element by when it was last executed.
○ Prioritize tests that cover a large number of elements

that have not recently been executed.
○ Ensures that all structural elements are eventually

recovered, especially if they have not recently been
tested.

Gregory Gay CSCE 747 - Spring 2016 48

We Have Learned

● Late-stage testing techniques are concerned
with behavior of the system as a whole, but
for different purposes.

● System Testing
○ Verification of the completed system against the

specifications.
● Acceptance Testing

○ Validation against the user's expectations.
● Regression Testing

○ Ensuring that the system continues to work as
expected when it evolves.

Gregory Gay CSCE 747 - Spring 2016 49

Next Time

● When is software ready for release?
○ Measuring dependability
○ Some material in Chapter 4

● Homework:
○ Assignment 4 - due tonight!
○ Assignment 5 is out!
○ Presentations - April 19, 21, 26, May 3

Gregory Gay CSCE 747 - Spring 2016 50

