A little more on structural
testing...



Where Coverage Goes Wrong...

e Testing can only reveal a fault when
execution of the faulty element causes a
failure, but...

e Execution of a line containing a fault does
not guarantee a failure.

o (a <=Db) accidentally written as (a >= b) - the fault
will not manifest as a failure if a==b in the test case.

e Merely executing code does not guarantee
that we will find all faults.
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Don’t Rely on Metrics

A GOOD LAY TO JUDGE
CORPORATE HEALTH IS TO
LOCK AT YOUR EMPLOYEE
TURNCWVER RATE,

S AEMT  CMal SCOTTADAMAGACL COM

OUR TURNOVER RATE
IS5 VERY LOW. LJE
ONLY HIRE PEOPLE
WHO AREN'T SKILLED
ENOUGH TO LOCRK
AMNYPLACE ELSE

stopping criterion.

O o 1w Fuokors Synidkoste Inc

MAYBE
METRICS
AREN'T
THE LJAY
T0 GO
HERE

ﬁi

e But, auto-generating tests with coverage as the goal
produces poor tests.
e Two key problems - sensitivity to how code is written,
and whether infected program state is noticed by oracle.

Gregory Gay
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Sensitivity to Structure

expr 1=in_1||in_2;
out 1 =expr 1 &&in_3;

out 1=(in_1]|lin_2)&&in_3;

e Both pieces of code do the same thing.

e How code is written impacts the number and
type of tests needed.

e Simpler statements result in simpler tests.
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Sensitivity to Oracle

e The oracle judges test correctness.
o We need to choose what results we check when
writing an oracle.
e Typically, we check certain output variables.

o However, masking can prevent us from noticing a

fault if we do not check the right variables.
o We can’t monitor and check all variables.

o But, we can carefully choose a small number of
bottleneck points and check those.
m Some techniques for choosing these, but still
more research to be done.
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Coverage Effectiveness

Gregory Gay

Fault Finding (% Maximum)

100
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| | Still sensitive
to choice of
oracle.

Sensitive to
choice of
oracle.

Sensitive to 1

structuring of
the system.
] | ] i
100 200 300 400
Test Suite Size
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Why do we care about faults in masked
expressions?

e Effect of fault is only masked out for this test.
It is still a fault. In another execution
scenario, it might not be masked.

e \We just haven't noticed it yet.
o The faultisn’t gone, we just have bad tests.

e One solution - ensure that there is a path
from assignment to output where we will
notice the fault.

Gregory Gay CSCE 747 - Spring 2016
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One Solution - Observability

Program P containing expression e is a
transformer from inputs to outputs: p: I - O

P[v/e_] (computed value for n" instance of e
IS replaced by value v) .

observable(e, t) = Iv.P(t) != P[v/e_] (t)
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Observable MC/DC

MC/DC + observability = Observable MC/DC
Given test suite T, OI3DDO blidigthdios a@re:

((Vcc}m € Cond(P) .
(At € T. (B(t) !=Pltrue/c_l(t))) A
A (3t € T. (D(t)!=Dl[false/c_]1(t))))
(It € T. (P(t)!=P[false/c ]

Idea: Lift observability from decision level to
program level.
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Tagging Semantics

Assign each condition a tag set:
(ID, Boolean Outcome)
Evaluation determines tag propagation:

expl=cl && c2; (c1,true), (c2,false)]

exp2=c3 || c4; (c3,true), (c4,fallsz)]]
out=1f (c5) then [(c5,true),(sBxfelseiexp2>]
expl else exp2; <expl=]
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Benefits of Observability

OMC/DC should improve test effectiveness by
accounting for program structure and oracle
composition:

e \We select what points the oracle monitors,
OMC/DC requires propagation path to those
points.

e No sensitivity to structure because impact

must be propagated at monitoring points.
o I.e., we place conditions on the path taken.
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Evaluation - Results
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Still Not a Solved Problem

e OMC/DC often prescribes a large number of
iInfeasible obligations.

e Tests can be difficult to derive.

e Often results in better fault-finding, but not
100% fault-finding (especially in complex
systems).

e New coverage metrics and structural
coverage methods are being formulated.
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Data Flow Analysis
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Control Flow

e Capture dependencies
between parts of the
program, based on
“passing of control”
between those parts.

e We care about the effect ! \
of a statement when it
affects the path taken. | f* continus */

o but deemphasize the

information being B
transmitted.

1<x
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Data Flow

e Another view - program statements compute
and transform data...

o S0, look at how that data is passed through the
program.

e Reason about dependence

o A variable is used here - where does its value
from?

o Is this value ever used?
o |s this variable properly initialized?

o If the expression assigned to a variable is cha
what else would be affected?
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Data Flow

e Basis of the optimization performed by
compilers.

e Used to derive test cases.
O Have we covered the dependencies?

e Used to detect faults and other anomalies.

o Is this string tainted by a fault in the expression that
calculates its value?
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Definition-Use Pairs

e Data is defined.
o Variables are declared and assigned values.

e ... and data is used.
o Those variables are used to perform computations.

e Associations of definitions and uses capture
the flow of information through the program.
o Definitions occur when variables are declared,

initialized, assigned values, or received as
parameters.

o Uses occur in expressions, conditional statements,
parameter passing, return statements.
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Example - Definition-Use Pairs

Gregory Gay

1. min = 1;

2. max N;

3. mid = ((min
4. while (A[mid
5. mid = ((
6. if (x >
7. min
8. } else {
9. max
10. }
11. }

+ (max - min))/2);
] '= x or min <= max) {
min + (max - min))/2);

CSCE 747 - Spring 2016

N —

© o

def - min

def - max, use -
N

def - mid, use -
min, max

use - A[mid], mid,
X, min, max

def - mid, use -
min, max

use - x, A[mid],
mid

def - min, use -
mid

def - max, use -
mid



Example - Definition-Use Pairs

mid = ((min + (max - min))/2);

Gregory Gay

mid = ((min + \\\\\\\\\\\
(max - min)) /2); min =
mid +
1;
max =
mid -1;

CSCE 747 - Spring 2016
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©

def - min

def - max,
use - N

def - mid, use
- min, max
use - A[mid],
mid, X, min,
max

def - mid, use
- min, max
use -x, A
[mid], mid

def - min, use
- mid

def - max,
use - mid



Def-Use Pairs

e \We can say there is a def-use pair when:

O There is a def (definition) of variable x at location A.

o Variable x is used at location B.
o A control-flow path exists from A to B.
o and the path is definition-clear for X.

m If a variable is redefined, the original def is killed

and the pairing is between the new definition and
its associated use.
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Example - GCD

1. public int gcd(int x,
2. int tmp;
3. while (y!=0) {
4. tmp = x %5 y;
5. X =97
6. y = tmp;
7. }
8. return x;
9. }
Gregory Gay

int y) {
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© N

o=

def: x, y
def: tmp
use:y
use: X, y
def: tmp
use:y
def: x
use: tmp
def. y

use: X



Example - GCD

. . . . —— public int ged E—
1. public 1nt gcd(int x, 1nt vy) { I
2. int tmp ’ /';_)ubul::: int ged(int x, int y) { CA)
3. while (y!=0) { N | g
4. tmp = X % V7
5. X = y; Gvnue(yho) _ @ﬁ
6. y = tmp; i | |use=m
7. } | i
8. return Xx; (tmp=x%y; ©
\ def = {tmp }
9. } l use = {x, y}

-y ®
1. def. x, y 2. def. tmp [ | ek

3. use:y 4. use: X, y def: tmp (1=t ®

5 def = )
5. use: ydef: x 6.use:tmp def:y — y
8. use: x N __©
use = {x}
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Data Dependence

e |[f a definition is impacted by a fault, all uses
of that definition will be too.

e Uses are dependent on definitions.

e Tests that focus on these dependencies are
likely to trigger faults.

(public int ged(int x, int y) { CA%

e Data dependency T
can be visualized. ]
o Nodes = statements J L —C R
o Edges = data N IR o
dependence = L ®

Gregory Gay CSCE 747 - Spring 2016 11



Control-Dependence

e A node that is reached on every execution
path from entry to exit is control dependent
only on the entry point.

e For any other node N, that is reached on
some - but not all - paths, there is some
branch that controls whether that node is
executed.

e Node M dominates node N if every path from
the root of the graph to N passes through M.
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Domination

e Nodes typically have many dominators.
e Except for the root, a node will have a
uniqgue immediate dominator.

o Closest dominator of N on any path from the root

and which is dominated by all other dominators of N.
o Forms a dependency tree.

e Domination can also be calculated in the
reverse direction of control flow, using the
exit node as root.

o Dominators in this direction are called post-

dominators.
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Domination Example

e To understand control-dependence,
look at pre and post-dominators.

O

O
©)
O

O

O

Gregory Gay

A pre-dominates all nodes

G post-dominates all nodes

F and G post-dominate E

G is the immediate post-
dominator of B

C does not post-dominate B

B is the immediate pre-dominator
of G

F does not pre-dominate G

CSCE 747 - Spring 2016
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Post-Dominators and Control

Dependency

e Node N is reached on some paths.
e N is control-dependent on a node C if that

node:

o Has two or more successor nodes.

o |Is not post-dominated by N.

o Has a successor that is post-dominated by N.
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Control-Dependency Example

e Execution of F is not A
Inevitable at B. |

e Execution of F is )
Inevitable at E. c/\E

e F is control-dependent
on B - the last point at o i
which it is not ~_ _—
inevitable. G
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GCD Example

. . —I public int gcd |7
e B and F are inevitable, ) | i
only dependent on entry S T TR

use ={}

(A). L
e C,D, and E (nodes in the T O

Ve

False 4 use=
loop) depend on the loop 4 e
condition (B). g1 _ ®
J' use = {x, y}
[y (®)
‘ o
(y=mp )
b def = {y)
L use = {tmp} )
\‘*Gemmx" def = {} @
use = {x}
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Data Flow Analysis



Reachability

e Def-Use pairs describe paths through the
program’s control flow.

o There is a (d,u) pair for variable V only if at least one
path exists between d and u.

o If this is the case, a definition Vd reaches u.
m V is a reaching definition at u.

o If the path passes through a new definition V_, then
V_kills V.,
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Computing Def-Use Pairs

e One algorithm: Search

the CFG for paths X= .

without redefinitions. =

o Not practical - N
remember path X ye-

?
coverage® S~

e |nstead, summarize the
reaching definitions at a
node over all paths
reaching that node.
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Computing Def-Use Pairs

e If we calculate the reaching definitions of
node n, and there is an edge (p, n) from an
Immediate predecessor node p.

o If p can assign a value to variable v, then definition

v_reaches n.
p .
m Vv is generated at p.

o If a definition v reaches p, and if there is no new
definition, then v_ is propagated from p to n.

m If there is a new definition, v, Kills v, and v,
propagates to n.
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Computing Def-Use Pairs

e Reaching definitions

flowing out at of a node x=.
y=. X,Y.,Z
are. z=.. ara e
o All the reaching N
definitions flowing in Xz ye.

o Minus the definitions X, Y., Z, \/ : X, Y Z,
that are killed

o Plus the definitions
that are generated Xpr Yar Zpr Xar Yor Zo0 Wy
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Flow Equations

e As node n may have multiple predecessors,

we must merge their reaching definitions:
o Reachln(n) = Upepred(n) ReachOut(p)

e The definitions that reach out are those that
reach in, minus those killed, plus those

generated.
o ReachQut(n) = (ReachiIn(n) \ kill(n)) U gen(n)
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Computing Reachability

e |nitialize
o ReachOutis empty for every node.

e Repeatedly update

o Pick a node and recalculate Reachln, ReachOut.

e Stop when stable
o No further changes to ReachOut for any node

o Guaranteed because the flow equations defin

monotonic function on the finite /aftice of poss
sets of reaching definition.
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Iterative Worklist Algorithm

e Initialize the reaching
definitions flowina oiit to

Keep a worklist of nodes
to be processed.

At each step remove an
element from the worklist

PRGN G +

Calculate the flow
equations.

If the recalculated value is
different for the node add its
successors to the worklist.

Gregory Gay

for(n € nodes) {

ReachOut (n) = {};
}
workList = nodes;
while (workList !'= {}){
n = a node from the workList;

workList = workList \ {n};

oldVal = ReachOut (n);

ReachIn (n) = UpEmﬁde ReachOut (p) ;
ReachOut (n) = (ReachIn(n) \ kill
(n)) U gen(n)
i1f (ReachOut !'= oldVval) {
workList = workList U succ(n);
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Can this algorithm work for other

analyses?

e Reachln/ReachOut are flow equations.
o They describe passing information over a graph.

o Many other program analyses follow a commc
pattern.

e [nitialize-Repeat-Until-Stable Algorithm

o Would work for any set of flow equations as Ic
the constraints for convergence are satisfied.

e Another problem - expression availability.
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Available Expressions

e \When can the value of a subexpression be
saved and reused rather than recomputed?

O Classic data-flow analysis, often used in compiler
construction.

e Can be defined in terms of paths in a CFG.
e An expression is available if - for all paths
through the CFG - the expression has been

computed and not later modified.

o EXpression is generated when computed.
o ... and killed when any part of it is redefined.
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Available Expressions

e Like with reaching, availability can be
described using flow equations.

e The expressions that become available (gen
set) and cease to be available (kill set) can
be computed simply.

e Flow equations:

o Availln(n) =N, AvailOut(p)

Epred(n)

o AvailOut(n) = (Availln(n) \ kill(n)) U gen(n)
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Iterative Worklist Algorithm

e Input:

o A control flow graph
G = (nodes, edges)

o pred(n)
o succ(n)
o gen(n)
o Kkill(n)
e Output:
o Availln(n)

Gregory Gay

for(n € nodes) {

AvailOut (n) = set of all expressions
defined anywhere;

}

workList = nodes;
while (workList !'= {}){
n = a node from the workList;

workList = workList \ {n};
oldval = AvailOut (n);
AvaillIn(n) = anpred(n) AvailOut (p)

AvailOut(n) = (AvailIn(n) \ kill(n)) U
gen (n)

if (AvailOut !'= oldVal) {
workList = workList U succ(n);
}
}
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Analysis Types

e Both reaching definitions and expression
availability are calculated on the CFG in the
direction of program execution.

o They are forward analyses.

e Definitions can reach across any path.
o The in-flow equation uses a union.
o This is a forward, any-path analysis.

e EXxpressions must be available on all paths.

o The in-flow equation uses an intersection.
o This is a forward, all-paths analysis.
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Forward, All-Paths Analyses

e Encode properties as tokens that are
generated when they become true, then

killed when they become false.
o The tokens are “used” when evaluated.

e Can evaluate properties of the form:
o “G occurs on all execution paths leading to U, and

there is no intervening occurrence of K between G
and U.”

o Variable initialization check - G = variable-is-
initialized, U = variable-is-used, K = variable-is-
uninitialized (kill set is empty)
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Backward Analysis - Live Variables

e Tokens can flow backwards as easily as
forwards in a CFG.

e Backward analyses are used to examine
what happens after an event of interest.

e “Live Variables” - analysis to determine
whether the value held in a variable may be
used.

o A variable may be considered live if there is any
possible execution path where it is used.

Gregory Gay CSCE 747 - Spring 2016
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Live Variables

e A variable is live if its current value may be
used before it is changed.

e Can be expressed as flow equations.
o Liveln(n)=U LiveOut(p)

p €Esucc(n)

m Calculated on successors, not predecessors.
o LiveOut(n) = (Liveln(n) \ kill(n)) U gen(n)
e \Worklist algorithm can still be used, just
using successors instead of predecessors.
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Backwards, Any-Paths Analyses

e General pattern for backwards, any-path:
o “After D occurs, there is at least one execution path

on which G occurs with no intervening occurrence of
K.”

m D indicates a property of interest. G is when it
becomes true. K is when it becomes false.

m Useless definition check, D = variable-is-
assigned, G = variable-is-used, K = variable-is-
reassigned.
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Backwards, All-Paths Analyses

e Check for a property that must inevitably

become true.
e General pattern for backwards, all-path:

o “After D occurs, G always occurs with no intervening

occurrence of K.”
o Informally, “D inevitably leads to G before K”

m D indicates a property of interest. G is when it
becomes true. K is when it becomes false.

m Ensure interrupts are reenabled, files are closed,
etc.
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Analysis Classifications

Any-Paths All-Paths

Forward (pred) Reach Avail

U may be preceded | U is always

by G without an preceded by G
intervening K without an
intervening K

Backward (succ) Live Inevitability
D may lead to G D always leads to
before K G before K
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Crafting Our Own Analysis

e \We can derive a flow analysis from run-time
analysis of a program.

e The same data flow algorithms can be used.

o Gen set is “facts that become true at that point”
o Kill set is “facts that are no longer true at that point”
o Flow equations describe propagation
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Monotonicity Argument

e Constraint: The outputs computed by the
flow equations must be monotonic functions

of their inputs.

e \When we recompute the set of “facts”:

o The gen set can only get larger or stay the same.
o The kill set can only grow smaller or stay the same.

Gregory Gay CSCE 747 - Spring 2016 38



Taint Analysis

e Built into Perl. Prevents program errors from data
validation by detecting and preventing use of “tainted”
data in sensitive operations.

e Tracks sources that variables are derived from. Looks
for data derived from tainted data, and tracks corrupted
program state.

o String created from concatenating a tainted and a

safe string is corrupted by the tainted string.
e Signals an error if tainted data is used in a potentially
dangerous way.
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Taint Analysis Variant

e Perl monitors values dynamically.

e Alternative - analysis that prevents data that
could be tainted from ever being used in an
unsafe manner.

e Forward, any-path analysis.

o Tokens = tainted variables

o Gen set = any variable assigned a tainted value
o Kill set = variable cleansed of taintedness
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Taint Analysis Variant

e Gen and kill sets depend on the set of
tainted variables, which is not constant.

o Circularity - tainted variable set also depends on gen
and Kill sets.

e Monotonicity property ensures soundness of
the analysis.
o We evaluate taintedness of an expression with the

set {a,b}, then again with {a,b,c}. If it is tainted the
first time, it must be tainted the second time.
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We Have Learned

e Control-flow and data-flow both capture
important paths in program execution.

e Analysis of how variables are defined and
then used and the dependencies between
definitions and usages can help us reveal
Important faults.

e Many forms of analysis can be performed
using data flow information.
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We Have Learned

e Analyses can be backwards or forwards.

o ... and require properties be true on all-paths or any-
path.

Reachability is forwards, any-path.
Expression availability is forwards, all-paths.
Live variables are backwards, any-path.
Inevitability is backwards, all-paths.

Many analyses can be expressed in this
framework.
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Next Class

e Data flow test adequacy criteria
e Data flow analysis with arrays and pointers.

e Reading: Chapter 13
e Homework 1 due tonight.
e Reading assignment 2 out.
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Control Dependence Graph

Which statement controls the execution of a
statement of interest?

e Ina CFQ, order is imposed CTTTEIIETTENO
whether it matters or not. — :
o If there is dependency, (T ‘ ® ®
then the order p f N
does matter.  g,o, o | ®
e CDG shows only
dependencies. e ©

e Often combined with DDG.
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Data Dependence Graph

/ v }
|
i (tmp=x%y (c)«-\ E
| ~tmp Ly’ | :
I y ! 3
| Y 'y :
- (y=tmp B |
: e Y : :
| | | i |
Yy v Y | v ,
[while (y 1= 0) @ (x=y. ON
{ e i
v
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Powerset Lattice

e Lattice is made up of subsets of a {a b, )
set.
o Powerset of set A is the set of all {a, b} {a c} {b, c}
subsets of A.
e |If the subset grows larger as we W}M
follow the arrows, subset y >= x.
e A function is monotonically

increasing if:
o X >=yimplies f(y) >= f(x)

{}
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