
A little more on structural 
testing...



Where Coverage Goes Wrong...

● Testing can only reveal a fault when 
execution of the faulty element causes a 
failure, but…

● Execution of a line containing a fault does 
not guarantee a failure.
○ (a <= b) accidentally written as (a >= b) - the fault 

will not manifest as a failure if a==b in the test case.

● Merely executing code does not guarantee 
that we will find all faults.
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Don’t Rely on Metrics

● There is a small benefit from using coverage as a 
stopping criterion.

● But, auto-generating tests with coverage as the goal 
produces poor tests.

● Two key problems - sensitivity to how code is written, 
and whether infected program state is noticed by oracle.
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Sensitivity to Structure

expr_1 = in_1 || in_2;     
out_1 = expr_1 && in_3;   

out_1 = (in_1 || in_2) && in_3;

● Both pieces of code do the same thing.
● How code is written impacts the number and 

type of tests needed.
● Simpler statements result in simpler tests.
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Sensitivity to Oracle

● The oracle judges test correctness.
○ We need to choose what results we check when 

writing an oracle.
● Typically, we check certain output variables.

○ However, masking can prevent us from noticing a 
fault if we do not check the right variables.

○ We can’t monitor and check all variables.
○ But, we can carefully choose a small number of 

bottleneck points and check those.
■ Some techniques for choosing these, but still 

more research to be done.
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Coverage Effectiveness

Sensitive to 
choice of 
oracle. Sensitive to 

structuring of 
the system.

Still sensitive 
to choice of 
oracle.

Gregory Gay CSCE 747 - Spring 2016 34



Masking

Why do we care about faults in masked 
expressions?
● Effect of fault is only masked out for this test. 

It is still a fault. In another execution 
scenario, it might not be masked.

● We just haven’t noticed it yet.
○ The fault isn’t gone, we just have bad tests.

● One solution - ensure that there is a path 
from assignment to output where we will 
notice the fault.
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One Solution - Observability

Program P containing expression e is a 
transformer from inputs to outputs:  P: I → O

P[v/en] (computed value for nth instance of e 
is replaced by value v).

observable(e, t) = ∃v.P(t)!= P[v/en](t)
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Observable MC/DC

MC/DC + observability = Observable MC/DC

Given test suite T, MC/DC obligations are:

(∀cn ∈ Cond(D) .
  (∃t ∈ T. (D(t)!=D[true/cn](t))) ⋀ 
(∃t ∈ T. (D(t)!=D[false/cn](t))))

Given test suite T, OMC/DC obligations are:

(∀cn ∈ Cond(P) .
  (∃t ∈ T. (P(t)!=P[true/cn](t))) 
⋀ 
(∃t ∈ T. (P(t)!=P[false/cn]

(t))))Idea: Lift observability from decision level to 
program level.
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Tagging Semantics

Assign each condition a tag set:
(ID, Boolean Outcome)
Evaluation determines tag propagation:
exp1=c1 && c2;
exp2=c3 || c4; 
out=if (c5) then 
exp1 else exp2;

[(c1,true), (c2,false)][(c1,true), (c2,false)]
[(c3,true), (c4,false)][(c3,true), (c4,false)]
[(c5,true), <exp1>,<exp2>][(c5,true),(c2, false),
<exp2>]
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Benefits of Observability

OMC/DC should improve test effectiveness by 
accounting for program structure and oracle 
composition:
● We select what points the oracle monitors, 

OMC/DC requires propagation path to those 
points. 

● No sensitivity to structure because impact 
must be propagated at monitoring points.
○ i.e., we place conditions on the path taken.
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Evaluation - Results

DWM_1 System
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Still Not a Solved Problem

● OMC/DC often prescribes a large number of 
infeasible obligations.

● Tests can be difficult to derive.
● Often results in better fault-finding, but not 

100% fault-finding (especially in complex 
systems).

● New coverage metrics and structural 
coverage methods are being formulated.
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Data Flow Analysis
CSCE 747 - Lecture 8 - 02/04/2016



Control Flow

● Capture dependencies 
between parts of the 
program, based on 
“passing of control” 
between those parts.

● We care about the effect 
of a statement when it 
affects the path taken.
○ but deemphasize the 

information being 
transmitted.
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x--;
/* continue */

1<x

T F



Data Flow

● Another view - program statements compute 
and transform data…
○ So, look at how that data is passed through the 

program.
● Reason about dependence

○ A variable is used here - where does its value come 
from?

○ Is this value ever used?
○ Is this variable properly initialized?
○ If the expression assigned to a variable is changed 

what else would be affected?

Gregory Gay CSCE 747 - Spring 2016 3



Data Flow

● Basis of the optimization performed by 
compilers.

● Used to derive test cases.
○ Have we covered the dependencies?

● Used to detect faults and other anomalies.
○ Is this string tainted by a fault in the expression that 

calculates its value?
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Definition-Use Pairs

● Data is defined.
○ Variables are declared and assigned values.

● … and data is used.
○ Those variables are used to perform computations.

● Associations of definitions and uses capture 
the flow of information through the program.
○ Definitions occur when variables are declared, 

initialized, assigned values, or received as 
parameters.

○ Uses occur in expressions, conditional statements, 
parameter passing, return statements.
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Example - Definition-Use Pairs
1. min = 1;
2. max = N;
3. mid = ((min + (max - min))/2);
4. while (A[mid] != x or min <= max){
5.     mid = ((min + (max - min))/2);
6.     if (x > A[mid]){
7.         min = mid + 1
8.     } else {
9.         max = mid - 1;
10.     }
11. }
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1. def - min
2. def - max, use - 

N
3. def - mid, use - 

min, max
4. use - A[mid], mid, 

x, min, max
5. def - mid, use - 

min, max
6. use - x, A[mid], 

mid
7. def - min, use - 

mid
8. -
9. def - max, use - 

mid



Example - Definition-Use Pairs
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1. def - min
2. def - max, 

use - N
3. def - mid, use 

- min, max
4. use - A[mid], 

mid, x, min, 
max

5. def - mid, use 
- min, max

6. use - x, A
[mid], mid

7. def - min, use 
- mid

8. -
9. def - max, 

use - mid

min = 1; max = 
N;

A[mid] != 
x or min 
<= max

mid = ((min + 
(max - min))/2);

x > A

[mid]

min = 
mid + 
1;

max = 
mid -1;

mid = ((min + (max - min))/2);



Def-Use Pairs

● We can say there is a def-use pair when:
○ There is a def (definition) of variable x at location A.
○ Variable x is used at location B.
○ A control-flow path exists from A to B.
○ and the path is definition-clear for x.

■ If a variable is redefined, the original def is killed 
and the pairing is between the new definition and 
its associated use. 
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Example - GCD
1. public int gcd(int x, int y){
2.     int tmp;
3.     while(y!=0){
4.         tmp = x % y;
5.         x = y;
6.         y = tmp;
7.     }
8.     return x;
9. }
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1. def: x, y
2. def: tmp
3. use: y
4. use: x, y 

def: tmp
5. use: y

def: x
6. use: tmp

def: y
7.  -
8. use: x



Example - GCD
1. public int gcd(int x, int y){
2.     int tmp;
3.     while(y!=0){
4.         tmp = x % y;
5.         x = y;
6.         y = tmp;
7.     }
8.     return x;
9. }
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1. def: x, y          2. def: tmp
3. use: y             4. use: x, y def: tmp
5. use: y def: x   6. use: tmp def: y
8. use: x



Data Dependence

● If a definition is impacted by a fault, all uses 
of that definition will be too. 

● Uses are dependent on definitions.
● Tests that focus on these dependencies are 

likely to trigger faults.
● Data dependency 

can be visualized.
○ Nodes = statements
○ Edges = data 

dependence
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Control-Dependence

● A node that is reached on every execution 
path from entry to exit is control dependent 
only on the entry point. 

● For any other node N, that is reached on 
some - but not all - paths, there is some 
branch that controls whether that node is 
executed.  

● Node M dominates node N if every path from 
the root of the graph to N passes through M.
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Domination

● Nodes typically have many dominators.
● Except for the root, a node will have a 

unique immediate dominator.
○ Closest dominator of N on any path from the root 

and which is dominated by all other dominators of N. 
○ Forms a dependency tree.

● Domination can also be calculated in the 
reverse direction of control flow, using the 
exit node as root.
○ Dominators in this direction are called post-

dominators.
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Domination Example

● To understand control-dependence, 
look at pre and post-dominators.
○ A pre-dominates all nodes
○ G post-dominates all nodes
○ F and G post-dominate E
○ G is the immediate post-

dominator of B
○ C does not post-dominate B
○ B is the immediate pre-dominator 

of G
○ F does not pre-dominate G
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Post-Dominators and Control 
Dependency

● Node N is reached on some paths.
● N is control-dependent on a node C if that 

node:
○ Has two or more successor nodes.
○ Is not post-dominated by N.
○ Has a successor that is post-dominated by N.
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Control-Dependency Example

● Execution of F is not 
inevitable at B.

● Execution of F is 
inevitable at E.

● F is control-dependent 
on B - the last point at 
which it is not 
inevitable.
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B

C

D

E

F

G



GCD Example

● B and F are inevitable, 
only dependent on entry 
(A).

● C, D, and E (nodes in the 
loop) depend on the loop 
condition (B).
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Data Flow Analysis



Reachability

● Def-Use pairs describe paths through the 
program’s control flow.
○ There is a (d,u) pair for variable V only if at least one 

path exists between d and u.
○ If this is the case, a definition Vd reaches u. 

■ Vd is a reaching definition at u. 
○ If the path passes through a new definition Ve, then 

Ve kills Vd.
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Computing Def-Use Pairs

● One algorithm: Search 
the CFG for paths 
without redefinitions.
○ Not practical - 

remember path 
coverage? 

● Instead, summarize the 
reaching definitions at a 
node over all paths 
reaching that node.
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x = ..
y = ..
z = ..

x = ..
z = ..

y = ..
z = ..

w = ..



Computing Def-Use Pairs

● If we calculate the reaching definitions of 
node n, and there is an edge (p, n) from an 
immediate predecessor node p.
○ If p can assign a value to variable v, then definition 

vp reaches n.
■ vp is generated at p.

○ If a definition vd reaches p, and if there is no new 
definition, then vd is propagated from p to n.
■ If there is a new definition, vp kills vd and vp 

propagates to n.
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Computing Def-Use Pairs
● Reaching definitions 

flowing out at of a node 
are:
○ All the reaching 

definitions flowing in
○ Minus the definitions 

that are killed
○ Plus the definitions 

that are generated
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x = ..
y = ..
z = ..

x = ..
z = ..

y = ..
z = ..

w = ..

xa, ya, za 

xa, yc, zc xb, ya, zb 

xb, ya, zb, xa, yc, zc, wd



Flow Equations

● As node n may have multiple predecessors, 
we must merge their reaching definitions:
○ ReachIn(n) = ⋃p∈pred(n) ReachOut(p)

● The definitions that reach out are those that 
reach in, minus those killed, plus those 
generated.
○ ReachOut(n) = (ReachIn(n) \ kill(n)) ⋃ gen(n)
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Computing Reachability 

● Initialize
○ ReachOut is empty for every node.

● Repeatedly update
○ Pick a node and recalculate ReachIn, ReachOut.

● Stop when stable
○ No further changes to ReachOut for any node
○ Guaranteed because the flow equations define a 

monotonic function on the finite lattice of possible 
sets of reaching definition.
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Iterative Worklist Algorithm

● Input:
○ A control flow graph 

G = (nodes, edges)
○ pred(n)
○ succ(n)
○ gen(n)
○ kill(n)

● Output:
○ ReachIn(n)
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for(n ∈ nodes){

ReachOut(n) = {};

}

workList = nodes;

while(workList != {}){

n = a node from the workList;

workList = workList \ {n};

oldVal = ReachOut(n);

ReachIn(n) = ⋃p∈pred(n) ReachOut(p);

ReachOut(n) = (ReachIn(n) \ kill
(n)) ⋃ gen(n)

if(ReachOut != oldVal){

workList = workList ⋃ succ(n);

}

}

Initialize the reaching 
definitions flowing out to 
an empty set.Keep a worklist of nodes 
to be processed.
At each step remove an 
element from the worklist 
and process it.
Calculate the flow 
equations.

If the recalculated value is 
different for the node add its 
successors to the worklist.



Can this algorithm work for other 
analyses?

● ReachIn/ReachOut are flow equations.
○ They describe passing information over a graph.

○ Many other program analyses follow a common 
pattern.

● Initialize-Repeat-Until-Stable Algorithm
○ Would work for any set of flow equations as long as 

the constraints for convergence are satisfied.

● Another problem - expression availability.
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Available Expressions

● When can the value of a subexpression be 
saved and reused rather than recomputed?
○ Classic data-flow analysis, often used in compiler 

construction.
● Can be defined in terms of paths in a CFG.
● An expression is available if - for all paths 

through the CFG - the expression has been 
computed and not later modified.
○ Expression is generated when computed.
○ … and killed when any part of it is redefined.
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Available Expressions

● Like with reaching, availability can be 
described using flow equations.

● The expressions that become available (gen 
set) and cease to be available (kill set) can 
be computed simply.

● Flow equations:
○ AvailIn(n) = ⋂p∈pred(n) AvailOut(p)

○ AvailOut(n) = (AvailIn(n) \ kill(n)) ⋃ gen(n)
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Iterative Worklist Algorithm

● Input:
○ A control flow graph 

G = (nodes, edges)
○ pred(n)
○ succ(n)
○ gen(n)
○ kill(n)

● Output:
○ AvailIn(n)
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for(n ∈ nodes){

AvailOut(n) = set of all expressions 
defined anywhere;

}

workList = nodes;

while(workList != {}){

n = a node from the workList;

workList = workList \ {n};

oldVal = AvailOut(n);

AvailIn(n) = ⋂p∈pred(n) AvailOut(p)

AvailOut(n) = (AvailIn(n) \ kill(n)) ⋃ 
gen(n)

if(AvailOut != oldVal){

workList = workList ⋃ succ(n);

}

}



Analysis Types

● Both reaching definitions and expression 
availability are calculated on the CFG in the 
direction of program execution.
○ They are forward analyses.

● Definitions can reach across any path.
○ The in-flow equation uses a union.
○ This is a forward, any-path analysis.

● Expressions must be available on all paths.
○ The in-flow equation uses an intersection. 
○ This is a forward, all-paths analysis.
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Forward, All-Paths Analyses

● Encode properties as tokens that are 
generated when they become true, then 
killed when they become false. 
○ The tokens are “used” when evaluated.

● Can evaluate properties of the form:
○ “G occurs on all execution paths leading to U, and 

there is no intervening occurrence of K between G 
and U.”

○ Variable initialization check - G = variable-is-
initialized, U = variable-is-used, K = variable-is-
uninitialized (kill set is empty)
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Backward Analysis - Live Variables

● Tokens can flow backwards as easily as 
forwards in a CFG.

● Backward analyses are used to examine 
what happens after an event of interest.

● “Live Variables” - analysis to determine 
whether the value held in a variable may be 
used.
○ A variable may be considered live if there is any 

possible execution path where it is used.
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Live Variables

● A variable is live if its current value may be 
used before it is changed.

● Can be expressed as flow equations.
○ LiveIn(n) = ⋃p∈succ(n) LiveOut(p)

■ Calculated on successors, not predecessors. 
○ LiveOut(n) = (LiveIn(n) \ kill(n)) ⋃ gen(n)

● Worklist algorithm can still be used, just 
using successors instead of predecessors. 
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Backwards, Any-Paths Analyses

● General pattern for backwards, any-path:
○ “After D occurs, there is at least one execution path 

on which G occurs with no intervening occurrence of 
K.”
■ D indicates a property of interest. G is when it 

becomes true. K is when it becomes false.
■ Useless definition check, D = variable-is-

assigned, G = variable-is-used, K = variable-is-
reassigned.
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Backwards, All-Paths Analyses

● Check for a property that must inevitably 
become true.

● General pattern for backwards, all-path:
○ “After D occurs, G always occurs with no intervening 

occurrence of K.”
○ Informally, “D inevitably leads to G before K”

■ D indicates a property of interest. G is when it 
becomes true. K is when it becomes false.

■ Ensure interrupts are reenabled, files are closed, 
etc.
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Analysis Classifications
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Any-Paths All-Paths

Forward (pred) Reach

U may be preceded 
by G without an 
intervening K

Avail

U is always 
preceded by G 
without an 
intervening K

Backward (succ) Live

D may lead to G 
before K

Inevitability

D always leads to 
G before K



Crafting Our Own Analysis

● We can derive a flow analysis from run-time 
analysis of a program.

● The same data flow algorithms can be used.
○ Gen set is “facts that become true at that point”
○ Kill set is “facts that are no longer true at that point”
○ Flow equations describe propagation
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Monotonicity Argument

● Constraint: The outputs computed by the 
flow equations must be monotonic functions 
of their inputs.

● When we recompute the set of “facts”: 
○ The gen set can only get larger or stay the same.
○ The kill set can only grow smaller or stay the same.
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Taint Analysis
● Built into Perl. Prevents program errors from data 

validation by detecting and preventing use of “tainted” 
data in sensitive operations.

● Tracks sources that variables are derived from. Looks 
for data derived from tainted data, and tracks corrupted 
program state.

○ String created from concatenating a tainted and a 
safe string is corrupted by the tainted string.

● Signals an error if tainted data is used in a potentially 
dangerous way.
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Taint Analysis Variant

● Perl monitors values dynamically.
● Alternative - analysis that prevents data that 

could be tainted from ever being used in an 
unsafe manner.

● Forward, any-path analysis.
○ Tokens = tainted variables
○ Gen set = any variable assigned a tainted value
○ Kill set = variable cleansed of taintedness 
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Taint Analysis Variant

● Gen and kill sets depend on the set of 
tainted variables, which is not constant.
○ Circularity - tainted variable set also depends on gen 

and kill sets.

● Monotonicity property ensures soundness of 
the analysis. 
○ We evaluate taintedness of an expression with the 

set {a,b}, then again with {a,b,c}. If it is tainted the 
first time, it must be tainted the second time.
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We Have Learned

● Control-flow and data-flow both capture 
important paths in program execution.

● Analysis of how variables are defined and 
then used and the dependencies between 
definitions and usages can help us reveal 
important faults.

● Many forms of analysis can be performed 
using data flow information.

Gregory Gay CSCE 747 - Spring 2016 42



We Have Learned

● Analyses can be backwards or forwards.
○ … and require properties be true on all-paths or any-

path.
● Reachability is forwards, any-path.
● Expression availability is forwards, all-paths.
● Live variables are backwards, any-path.
● Inevitability is backwards, all-paths.
● Many analyses can be expressed in this 

framework.
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Next Class

● Data flow test adequacy criteria
● Data flow analysis with arrays and pointers.

● Reading: Chapter 13
● Homework 1 due tonight.
● Reading assignment 2 out.
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backup slides



Control Dependence Graph

Which statement controls the execution of a 
statement of interest?

Gregory Gay CSCE 747 - Spring 2016 19

● In a CFG, order is imposed 
whether it matters or not.
○ If there is dependency, 

then the order 
does matter.

● CDG shows only 
dependencies.

● Often combined with DDG.



Data Dependence Graph
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Powerset Lattice
● Lattice is made up of subsets of a 

set.
○ Powerset of set A is the set of all 

subsets of A.
● If the subset grows larger as we 

follow the arrows, subset y >= x.
● A function is monotonically 

increasing if:
○ x >= y implies f(y) >= f(x)
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{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

{ }


