
A little more on structural
testing...

Where Coverage Goes Wrong...

● Testing can only reveal a fault when
execution of the faulty element causes a
failure, but…

● Execution of a line containing a fault does
not guarantee a failure.
○ (a <= b) accidentally written as (a >= b) - the fault

will not manifest as a failure if a==b in the test case.

● Merely executing code does not guarantee
that we will find all faults.

Gregory Gay CSCE 747 - Spring 2016 30

Don’t Rely on Metrics

● There is a small benefit from using coverage as a
stopping criterion.

● But, auto-generating tests with coverage as the goal
produces poor tests.

● Two key problems - sensitivity to how code is written,
and whether infected program state is noticed by oracle.

Gregory Gay CSCE 747 - Spring 2016 31

Sensitivity to Structure

expr_1 = in_1 || in_2;
out_1 = expr_1 && in_3;

out_1 = (in_1 || in_2) && in_3;

● Both pieces of code do the same thing.
● How code is written impacts the number and

type of tests needed.
● Simpler statements result in simpler tests.

Gregory Gay CSCE 747 - Spring 2016 32

Sensitivity to Oracle

● The oracle judges test correctness.
○ We need to choose what results we check when

writing an oracle.
● Typically, we check certain output variables.

○ However, masking can prevent us from noticing a
fault if we do not check the right variables.

○ We can’t monitor and check all variables.
○ But, we can carefully choose a small number of

bottleneck points and check those.
■ Some techniques for choosing these, but still

more research to be done.

Gregory Gay CSCE 747 - Spring 2016 33

Coverage Effectiveness

Sensitive to
choice of
oracle. Sensitive to

structuring of
the system.

Still sensitive
to choice of
oracle.

Gregory Gay CSCE 747 - Spring 2016 34

Masking

Why do we care about faults in masked
expressions?
● Effect of fault is only masked out for this test.

It is still a fault. In another execution
scenario, it might not be masked.

● We just haven’t noticed it yet.
○ The fault isn’t gone, we just have bad tests.

● One solution - ensure that there is a path
from assignment to output where we will
notice the fault.

Gregory Gay CSCE 747 - Spring 2016 35

One Solution - Observability

Program P containing expression e is a
transformer from inputs to outputs: P: I → O

P[v/en] (computed value for nth instance of e
is replaced by value v).

observable(e, t) = ∃v.P(t)!= P[v/en](t)

Gregory Gay CSCE 747 - Spring 2016 36

Observable MC/DC

MC/DC + observability = Observable MC/DC

Given test suite T, MC/DC obligations are:

(∀cn ∈ Cond(D) .
 (∃t ∈ T. (D(t)!=D[true/cn](t))) ⋀
(∃t ∈ T. (D(t)!=D[false/cn](t))))

Given test suite T, OMC/DC obligations are:

(∀cn ∈ Cond(P) .
 (∃t ∈ T. (P(t)!=P[true/cn](t)))
⋀
(∃t ∈ T. (P(t)!=P[false/cn]

(t))))Idea: Lift observability from decision level to
program level.

Gregory Gay CSCE 747 - Spring 2016 37

Tagging Semantics

Assign each condition a tag set:
(ID, Boolean Outcome)
Evaluation determines tag propagation:
exp1=c1 && c2;
exp2=c3 || c4;
out=if (c5) then
exp1 else exp2;

[(c1,true), (c2,false)][(c1,true), (c2,false)]
[(c3,true), (c4,false)][(c3,true), (c4,false)]
[(c5,true), <exp1>,<exp2>][(c5,true),(c2, false),
<exp2>]

Gregory Gay CSCE 747 - Spring 2016 38

Benefits of Observability

OMC/DC should improve test effectiveness by
accounting for program structure and oracle
composition:
● We select what points the oracle monitors,

OMC/DC requires propagation path to those
points.

● No sensitivity to structure because impact
must be propagated at monitoring points.
○ i.e., we place conditions on the path taken.

Gregory Gay CSCE 747 - Spring 2016 39

Evaluation - Results

DWM_1 System
Gregory Gay CSCE 747 - Spring 2016 40

Still Not a Solved Problem

● OMC/DC often prescribes a large number of
infeasible obligations.

● Tests can be difficult to derive.
● Often results in better fault-finding, but not

100% fault-finding (especially in complex
systems).

● New coverage metrics and structural
coverage methods are being formulated.

Gregory Gay CSCE 747 - Spring 2016 41

Data Flow Analysis
CSCE 747 - Lecture 8 - 02/04/2016

Control Flow

● Capture dependencies
between parts of the
program, based on
“passing of control”
between those parts.

● We care about the effect
of a statement when it
affects the path taken.
○ but deemphasize the

information being
transmitted.

Gregory Gay CSCE 747 - Spring 2016 2

x--;
/* continue */

1<x

T F

Data Flow

● Another view - program statements compute
and transform data…
○ So, look at how that data is passed through the

program.
● Reason about dependence

○ A variable is used here - where does its value come
from?

○ Is this value ever used?
○ Is this variable properly initialized?
○ If the expression assigned to a variable is changed

what else would be affected?

Gregory Gay CSCE 747 - Spring 2016 3

Data Flow

● Basis of the optimization performed by
compilers.

● Used to derive test cases.
○ Have we covered the dependencies?

● Used to detect faults and other anomalies.
○ Is this string tainted by a fault in the expression that

calculates its value?

Gregory Gay CSCE 747 - Spring 2016 4

Definition-Use Pairs

● Data is defined.
○ Variables are declared and assigned values.

● … and data is used.
○ Those variables are used to perform computations.

● Associations of definitions and uses capture
the flow of information through the program.
○ Definitions occur when variables are declared,

initialized, assigned values, or received as
parameters.

○ Uses occur in expressions, conditional statements,
parameter passing, return statements.

Gregory Gay CSCE 747 - Spring 2016 5

Example - Definition-Use Pairs
1. min = 1;
2. max = N;
3. mid = ((min + (max - min))/2);
4. while (A[mid] != x or min <= max){
5. mid = ((min + (max - min))/2);
6. if (x > A[mid]){
7. min = mid + 1
8. } else {
9. max = mid - 1;
10. }
11. }

Gregory Gay CSCE 747 - Spring 2016 6

1. def - min
2. def - max, use -

N
3. def - mid, use -

min, max
4. use - A[mid], mid,

x, min, max
5. def - mid, use -

min, max
6. use - x, A[mid],

mid
7. def - min, use -

mid
8. -
9. def - max, use -

mid

Example - Definition-Use Pairs

Gregory Gay CSCE 747 - Spring 2016 7

1. def - min
2. def - max,

use - N
3. def - mid, use

- min, max
4. use - A[mid],

mid, x, min,
max

5. def - mid, use
- min, max

6. use - x, A
[mid], mid

7. def - min, use
- mid

8. -
9. def - max,

use - mid

min = 1; max =
N;

A[mid] !=
x or min
<= max

mid = ((min +
(max - min))/2);

x > A

[mid]

min =
mid +
1;

max =
mid -1;

mid = ((min + (max - min))/2);

Def-Use Pairs

● We can say there is a def-use pair when:
○ There is a def (definition) of variable x at location A.
○ Variable x is used at location B.
○ A control-flow path exists from A to B.
○ and the path is definition-clear for x.

■ If a variable is redefined, the original def is killed
and the pairing is between the new definition and
its associated use.

Gregory Gay CSCE 747 - Spring 2016 8

Example - GCD
1. public int gcd(int x, int y){
2. int tmp;
3. while(y!=0){
4. tmp = x % y;
5. x = y;
6. y = tmp;
7. }
8. return x;
9. }

Gregory Gay CSCE 747 - Spring 2016 9

1. def: x, y
2. def: tmp
3. use: y
4. use: x, y

def: tmp
5. use: y

def: x
6. use: tmp

def: y
7. -
8. use: x

Example - GCD
1. public int gcd(int x, int y){
2. int tmp;
3. while(y!=0){
4. tmp = x % y;
5. x = y;
6. y = tmp;
7. }
8. return x;
9. }

Gregory Gay CSCE 747 - Spring 2016 10

1. def: x, y 2. def: tmp
3. use: y 4. use: x, y def: tmp
5. use: y def: x 6. use: tmp def: y
8. use: x

Data Dependence

● If a definition is impacted by a fault, all uses
of that definition will be too.

● Uses are dependent on definitions.
● Tests that focus on these dependencies are

likely to trigger faults.
● Data dependency

can be visualized.
○ Nodes = statements
○ Edges = data

dependence

Gregory Gay CSCE 747 - Spring 2016 11

Control-Dependence

● A node that is reached on every execution
path from entry to exit is control dependent
only on the entry point.

● For any other node N, that is reached on
some - but not all - paths, there is some
branch that controls whether that node is
executed.

● Node M dominates node N if every path from
the root of the graph to N passes through M.

Gregory Gay CSCE 747 - Spring 2016 12

Domination

● Nodes typically have many dominators.
● Except for the root, a node will have a

unique immediate dominator.
○ Closest dominator of N on any path from the root

and which is dominated by all other dominators of N.
○ Forms a dependency tree.

● Domination can also be calculated in the
reverse direction of control flow, using the
exit node as root.
○ Dominators in this direction are called post-

dominators.
Gregory Gay CSCE 747 - Spring 2016 13

Domination Example

● To understand control-dependence,
look at pre and post-dominators.
○ A pre-dominates all nodes
○ G post-dominates all nodes
○ F and G post-dominate E
○ G is the immediate post-

dominator of B
○ C does not post-dominate B
○ B is the immediate pre-dominator

of G
○ F does not pre-dominate G

Gregory Gay CSCE 747 - Spring 2016 14

A

B

C

D

E

F

G

Post-Dominators and Control
Dependency

● Node N is reached on some paths.
● N is control-dependent on a node C if that

node:
○ Has two or more successor nodes.
○ Is not post-dominated by N.
○ Has a successor that is post-dominated by N.

Gregory Gay CSCE 747 - Spring 2016 15

Control-Dependency Example

● Execution of F is not
inevitable at B.

● Execution of F is
inevitable at E.

● F is control-dependent
on B - the last point at
which it is not
inevitable.

Gregory Gay CSCE 747 - Spring 2016 16

A

B

C

D

E

F

G

GCD Example

● B and F are inevitable,
only dependent on entry
(A).

● C, D, and E (nodes in the
loop) depend on the loop
condition (B).

Gregory Gay CSCE 747 - Spring 2016 17

Data Flow Analysis

Reachability

● Def-Use pairs describe paths through the
program’s control flow.
○ There is a (d,u) pair for variable V only if at least one

path exists between d and u.
○ If this is the case, a definition Vd reaches u.

■ Vd is a reaching definition at u.
○ If the path passes through a new definition Ve, then

Ve kills Vd.

Gregory Gay CSCE 747 - Spring 2016 19

Computing Def-Use Pairs

● One algorithm: Search
the CFG for paths
without redefinitions.
○ Not practical -

remember path
coverage?

● Instead, summarize the
reaching definitions at a
node over all paths
reaching that node.

Gregory Gay CSCE 747 - Spring 2016 20

x = ..
y = ..
z = ..

x = ..
z = ..

y = ..
z = ..

w = ..

Computing Def-Use Pairs

● If we calculate the reaching definitions of
node n, and there is an edge (p, n) from an
immediate predecessor node p.
○ If p can assign a value to variable v, then definition

vp reaches n.
■ vp is generated at p.

○ If a definition vd reaches p, and if there is no new
definition, then vd is propagated from p to n.
■ If there is a new definition, vp kills vd and vp

propagates to n.

Gregory Gay CSCE 747 - Spring 2016 21

Computing Def-Use Pairs
● Reaching definitions

flowing out at of a node
are:
○ All the reaching

definitions flowing in
○ Minus the definitions

that are killed
○ Plus the definitions

that are generated

Gregory Gay CSCE 747 - Spring 2016 22

x = ..
y = ..
z = ..

x = ..
z = ..

y = ..
z = ..

w = ..

xa, ya, za

xa, yc, zc xb, ya, zb

xb, ya, zb, xa, yc, zc, wd

Flow Equations

● As node n may have multiple predecessors,
we must merge their reaching definitions:
○ ReachIn(n) = ⋃p∈pred(n) ReachOut(p)

● The definitions that reach out are those that
reach in, minus those killed, plus those
generated.
○ ReachOut(n) = (ReachIn(n) \ kill(n)) ⋃ gen(n)

Gregory Gay CSCE 747 - Spring 2016 23

Computing Reachability

● Initialize
○ ReachOut is empty for every node.

● Repeatedly update
○ Pick a node and recalculate ReachIn, ReachOut.

● Stop when stable
○ No further changes to ReachOut for any node
○ Guaranteed because the flow equations define a

monotonic function on the finite lattice of possible
sets of reaching definition.

Gregory Gay CSCE 747 - Spring 2016 24

Iterative Worklist Algorithm

● Input:
○ A control flow graph

G = (nodes, edges)
○ pred(n)
○ succ(n)
○ gen(n)
○ kill(n)

● Output:
○ ReachIn(n)

Gregory Gay CSCE 747 - Spring 2016 25

for(n ∈ nodes){

ReachOut(n) = {};

}

workList = nodes;

while(workList != {}){

n = a node from the workList;

workList = workList \ {n};

oldVal = ReachOut(n);

ReachIn(n) = ⋃p∈pred(n) ReachOut(p);

ReachOut(n) = (ReachIn(n) \ kill
(n)) ⋃ gen(n)

if(ReachOut != oldVal){

workList = workList ⋃ succ(n);

}

}

Initialize the reaching
definitions flowing out to
an empty set.Keep a worklist of nodes
to be processed.
At each step remove an
element from the worklist
and process it.
Calculate the flow
equations.

If the recalculated value is
different for the node add its
successors to the worklist.

Can this algorithm work for other
analyses?

● ReachIn/ReachOut are flow equations.
○ They describe passing information over a graph.

○ Many other program analyses follow a common
pattern.

● Initialize-Repeat-Until-Stable Algorithm
○ Would work for any set of flow equations as long as

the constraints for convergence are satisfied.

● Another problem - expression availability.

Gregory Gay CSCE 747 - Spring 2016 26

Available Expressions

● When can the value of a subexpression be
saved and reused rather than recomputed?
○ Classic data-flow analysis, often used in compiler

construction.
● Can be defined in terms of paths in a CFG.
● An expression is available if - for all paths

through the CFG - the expression has been
computed and not later modified.
○ Expression is generated when computed.
○ … and killed when any part of it is redefined.

Gregory Gay CSCE 747 - Spring 2016 27

Available Expressions

● Like with reaching, availability can be
described using flow equations.

● The expressions that become available (gen
set) and cease to be available (kill set) can
be computed simply.

● Flow equations:
○ AvailIn(n) = ⋂p∈pred(n) AvailOut(p)

○ AvailOut(n) = (AvailIn(n) \ kill(n)) ⋃ gen(n)

Gregory Gay CSCE 747 - Spring 2016 28

Iterative Worklist Algorithm

● Input:
○ A control flow graph

G = (nodes, edges)
○ pred(n)
○ succ(n)
○ gen(n)
○ kill(n)

● Output:
○ AvailIn(n)

Gregory Gay CSCE 747 - Spring 2016 29

for(n ∈ nodes){

AvailOut(n) = set of all expressions
defined anywhere;

}

workList = nodes;

while(workList != {}){

n = a node from the workList;

workList = workList \ {n};

oldVal = AvailOut(n);

AvailIn(n) = ⋂p∈pred(n) AvailOut(p)

AvailOut(n) = (AvailIn(n) \ kill(n)) ⋃
gen(n)

if(AvailOut != oldVal){

workList = workList ⋃ succ(n);

}

}

Analysis Types

● Both reaching definitions and expression
availability are calculated on the CFG in the
direction of program execution.
○ They are forward analyses.

● Definitions can reach across any path.
○ The in-flow equation uses a union.
○ This is a forward, any-path analysis.

● Expressions must be available on all paths.
○ The in-flow equation uses an intersection.
○ This is a forward, all-paths analysis.

Gregory Gay CSCE 747 - Spring 2016 30

Forward, All-Paths Analyses

● Encode properties as tokens that are
generated when they become true, then
killed when they become false.
○ The tokens are “used” when evaluated.

● Can evaluate properties of the form:
○ “G occurs on all execution paths leading to U, and

there is no intervening occurrence of K between G
and U.”

○ Variable initialization check - G = variable-is-
initialized, U = variable-is-used, K = variable-is-
uninitialized (kill set is empty)

Gregory Gay CSCE 747 - Spring 2016 31

Backward Analysis - Live Variables

● Tokens can flow backwards as easily as
forwards in a CFG.

● Backward analyses are used to examine
what happens after an event of interest.

● “Live Variables” - analysis to determine
whether the value held in a variable may be
used.
○ A variable may be considered live if there is any

possible execution path where it is used.

Gregory Gay CSCE 747 - Spring 2016 32

Live Variables

● A variable is live if its current value may be
used before it is changed.

● Can be expressed as flow equations.
○ LiveIn(n) = ⋃p∈succ(n) LiveOut(p)

■ Calculated on successors, not predecessors.
○ LiveOut(n) = (LiveIn(n) \ kill(n)) ⋃ gen(n)

● Worklist algorithm can still be used, just
using successors instead of predecessors.

Gregory Gay CSCE 747 - Spring 2016 33

Backwards, Any-Paths Analyses

● General pattern for backwards, any-path:
○ “After D occurs, there is at least one execution path

on which G occurs with no intervening occurrence of
K.”
■ D indicates a property of interest. G is when it

becomes true. K is when it becomes false.
■ Useless definition check, D = variable-is-

assigned, G = variable-is-used, K = variable-is-
reassigned.

Gregory Gay CSCE 747 - Spring 2016 34

Backwards, All-Paths Analyses

● Check for a property that must inevitably
become true.

● General pattern for backwards, all-path:
○ “After D occurs, G always occurs with no intervening

occurrence of K.”
○ Informally, “D inevitably leads to G before K”

■ D indicates a property of interest. G is when it
becomes true. K is when it becomes false.

■ Ensure interrupts are reenabled, files are closed,
etc.

Gregory Gay CSCE 747 - Spring 2016 35

Analysis Classifications

Gregory Gay CSCE 747 - Spring 2016 36

Any-Paths All-Paths

Forward (pred) Reach

U may be preceded
by G without an
intervening K

Avail

U is always
preceded by G
without an
intervening K

Backward (succ) Live

D may lead to G
before K

Inevitability

D always leads to
G before K

Crafting Our Own Analysis

● We can derive a flow analysis from run-time
analysis of a program.

● The same data flow algorithms can be used.
○ Gen set is “facts that become true at that point”
○ Kill set is “facts that are no longer true at that point”
○ Flow equations describe propagation

Gregory Gay CSCE 747 - Spring 2016 37

Monotonicity Argument

● Constraint: The outputs computed by the
flow equations must be monotonic functions
of their inputs.

● When we recompute the set of “facts”:
○ The gen set can only get larger or stay the same.
○ The kill set can only grow smaller or stay the same.

Gregory Gay CSCE 747 - Spring 2016 38

Taint Analysis
● Built into Perl. Prevents program errors from data

validation by detecting and preventing use of “tainted”
data in sensitive operations.

● Tracks sources that variables are derived from. Looks
for data derived from tainted data, and tracks corrupted
program state.

○ String created from concatenating a tainted and a
safe string is corrupted by the tainted string.

● Signals an error if tainted data is used in a potentially
dangerous way.

Gregory Gay CSCE 747 - Spring 2016 39

Taint Analysis Variant

● Perl monitors values dynamically.
● Alternative - analysis that prevents data that

could be tainted from ever being used in an
unsafe manner.

● Forward, any-path analysis.
○ Tokens = tainted variables
○ Gen set = any variable assigned a tainted value
○ Kill set = variable cleansed of taintedness

Gregory Gay CSCE 747 - Spring 2016 40

Taint Analysis Variant

● Gen and kill sets depend on the set of
tainted variables, which is not constant.
○ Circularity - tainted variable set also depends on gen

and kill sets.

● Monotonicity property ensures soundness of
the analysis.
○ We evaluate taintedness of an expression with the

set {a,b}, then again with {a,b,c}. If it is tainted the
first time, it must be tainted the second time.

Gregory Gay CSCE 747 - Spring 2016 41

We Have Learned

● Control-flow and data-flow both capture
important paths in program execution.

● Analysis of how variables are defined and
then used and the dependencies between
definitions and usages can help us reveal
important faults.

● Many forms of analysis can be performed
using data flow information.

Gregory Gay CSCE 747 - Spring 2016 42

We Have Learned

● Analyses can be backwards or forwards.
○ … and require properties be true on all-paths or any-

path.
● Reachability is forwards, any-path.
● Expression availability is forwards, all-paths.
● Live variables are backwards, any-path.
● Inevitability is backwards, all-paths.
● Many analyses can be expressed in this

framework.

Gregory Gay CSCE 747 - Spring 2016 43

Next Class

● Data flow test adequacy criteria
● Data flow analysis with arrays and pointers.

● Reading: Chapter 13
● Homework 1 due tonight.
● Reading assignment 2 out.

Gregory Gay CSCE 747 - Spring 2016 44

backup slides

Control Dependence Graph

Which statement controls the execution of a
statement of interest?

Gregory Gay CSCE 747 - Spring 2016 19

● In a CFG, order is imposed
whether it matters or not.
○ If there is dependency,

then the order
does matter.

● CDG shows only
dependencies.

● Often combined with DDG.

Data Dependence Graph

Gregory Gay CSCE 747 - Spring 2016 12

Powerset Lattice
● Lattice is made up of subsets of a

set.
○ Powerset of set A is the set of all

subsets of A.
● If the subset grows larger as we

follow the arrows, subset y >= x.
● A function is monotonically

increasing if:
○ x >= y implies f(y) >= f(x)

Gregory Gay CSCE 747 - Spring 2016 39

{a, b, c}

{a, b} {a, c} {b, c}

{a} {b} {c}

{ }

