
Model-Based Testing:
State Machines

CSCE 747 - Lecture 11 - 02/14/2017



Creating Requirements-Based Tests

Write Testable 
Specifications

Identify 
Independently 

Testable Features

Identify 
Representative 

Input Values

Generate Test Case 
Specifications

Generate Test 
Cases

Produce clear, detailed, and testable 
requirements.

Figure out what functions can be 
tested in (relative) isolation.

What are the outcomes of the 
feature, and which input classes 

will trigger them?

Identify abstract classes 
of test cases. 

Instantiate concrete 
input/output pairs.

Gregory Gay CSCE 747 - Spring 2017 2



Creating Requirements-Based Tests

● This process is effective for identifying the 
independent partitions for each input.
○ Leaving us with a large number of test specifications

● Humans must still identify constraints on 
combinations of input choices and identify a 
subset of important test specifications.

● An alternative approach - build a model from 
the specification, and derive tests from the 
structure of the model.

Gregory Gay CSCE 747 - Spring 2017 3



Models

● A model is an abstraction of the system 
being developed.
○ By abstracting away unnecessary details, extremely 

powerful analyses can be performed.
● Can be extracted from specifications and 

design plans
○ Illustrate the intended behavior of the system.
○ Often take the form of state machines.

■ Events cause the system to react, changing its 
internal state.

Gregory Gay CSCE 747 - Spring 2017 4



What Can We Do With This Model?

… Then we can derive test cases from the model that can 
be applied to the program. If the model and program do not 
agree, then there is a fault.

Gregory Gay CSCE 747 - Spring 2017 5

Specification 

public static void Main(){
System.out.println(“Hell

o world!”);
}

If the model satisfies 
the specification...

And If the model is 
well-formed, consistent, 
and complete.

And If the model accurately 
represents the program.



Model-Based Testing

● Models describe the structure of the input 
space.
○ They identify what will happen when types of input 

are applied to the system.
● That structure can be exploited:

○ Identify input partitions.
○ Identify constraints on inputs.
○ Identify significant input combinations.

● Can derive and satisfy coverage metrics for 
certain types of models.

Gregory Gay CSCE 747 - Spring 2017 6



Finite State Machines



Finite State Machines

● A directed graph.
● Nodes represent states

○ An abstract description of the 
current value of an entity’s 
attributes. 

● Edges represent transitions 
between states.
○ Events cause the state to 

change.
○ Labeled event [guard] / activity

■ event: The event that triggered the transition.
■ guard: Conditions that must be true to choose a transition.
■ activity: Behavior exhibited by the object when this 

transition is taken. 

Gregory Gay CSCE 747 - Spring 2017 8



Example: Gumball Machine

Waiting for 
Quarter

Quarter 
Inserted

user inserts quarteruser ejects quarter

Gumball 
Sold

user turns crank

Out of 
Gumballs

[gumballs > 0]

[gumballs -1 > 0] 
/ dispense 
gumball

[gumballs -1 = 0] / dispense 
gumball

Gregory Gay CSCE 747 - Spring 2017 9



Example: Maintenance
If the product is covered by warranty or maintenance contract, maintenance 
can be requested through the web site or by bringing the item to a designated 
maintenance station.
If the maintenance is requested by web and the customer is a US resident, the 
item is picked up from the customer. Otherwise, the customer will ship the item.
If the product is not covered by warranty or the warranty number is not valid, 
the item must be brought to a maintenance station. The station informs the 
customer of the estimated cost. Maintenance starts when the customer accepts 
the estimate. If the customer does not accept, the item is returned.
If the maintenance station cannot solve the problem, the product is sent to the 
regional headquarters (if in the US) or the main headquarters (otherwise). If the 
regional headquarters cannot solve the problem, the product is sent to main 
headquarters. 
Maintenance is suspended if some components are not available.
Once repaired, the product is returned to the customer.

Gregory Gay CSCE 747 - Spring 2018 10

No Maintenance

Waiting for Pick Up Request - No Warranty

Wait for Acceptance
Wait for ReturningRepair at Station

Repair at Regional HQ Repair at Main HQ

Wait for Component

Repaired



Example: Maintenance

Gregory Gay CSCE 747 - Spring 2017 11



Finite State Space

● Most systems have an infinite number of 
states.
○ For a communication protocol, there are an infinite 

number of possible messages that can be passed.
● To model such systems, non-finite 

components must be ignored or abstracted 
until the model is finite.
○ For the communication protocol, the message text 

doesn’t matter. How it is used does matter.
○ Requires an abstraction function to map back to the 

real system.

Gregory Gay CSCE 747 - Spring 2017 12



State Coverage

● Each state has been reached by one or 
more test cases.

● Analog to statement coverage - unless the 
model has been placed in each state, all 
faults cannot be revealed.

● Easy to understand and obtain, but low 
fault-revealing power.
○ The software takes action during the transitions, and 

most states can be reached through multiple 
transitions.

Gregory Gay CSCE 747 - Spring 2017 13



Transition Coverage

● A transition specifies a pre/post-condition.
○ “If the system is in state S and sees event I, then 

after reacting to it, the system will be in state T.”
○ A faulty system could violate any of these 

precondition, postcondition pairs.
● Coverage requires that every transition be 

covered by one or more test cases.
○ Subsumes state coverage.

Gregory Gay CSCE 747 - Spring 2017 14



Example: Maintenance

Gregory Gay CSCE 747 - Spring 2017 15

● Test cases often given 
as a list of states or 
transitions to be 
covered.

● No “final” states, could 
achieve transition 
coverage with one large 
test case.
○ Smarter to break 

down FSM and 
target sections in 
isolation.

Example Suite:
T1: 0-2-4-1-0
T2: 0-5-2-4-5-6-0
T3: 0-3-5-9-6-0
T4: 0-3-5-7-5-8-7-8-9-7-9-6-0
T5: 0-5-8-6-0



History Sensitivity

● Transition coverage based on assumption 
that transitions out of a state are 
independent of transitions into a state.

● Many machines exhibit “history sensitivity”. 
○ Transitions available depend on the history of 

previous actions.
○ AKA - the path to the current state. 
○ Can be a sign of a bad model design.

■ “wait for component” in example.
○ Path-based metrics can cope with sensitivity.

Gregory Gay CSCE 747 - Spring 2017 16



Path Coverage Metrics

● Single State Path Coverage
○ Requires that each subpath that traverses states at 

most once to be included in a path that is exercised.
● Single Transition Path Coverage

○ Requires that each subpath that traverses a 
transition at most once to be included in a path that 
is exercised.

● Boundary Interior Loop Coverage
○ Each distinct loop must be exercised minimum, an 

intermediate, and a large number of times.

Gregory Gay CSCE 747 - Spring 2017 17



Single State/Transition Path 
Coverage

Gregory Gay CSCE 747 - Spring 2017 18

Single State/Transition 
Path Coverage
● Requires that 

each subpath 
that traverses 
states/transitions at 
most once to be 
included in a path 
that is exercised.



Boundary Interior Loop Coverage

Gregory Gay CSCE 747 - Spring 2017 19

Boundary Interior 
Loop Coverage
● Each distinct 

loop must be 
exercised minimum, 
an intermediate, and 
a large number of 
times.



Test Generation

● Test cases created for models can be 
applied to programs.
○ Events can be translated into method input.
○ System output, when abstracted, should match 

model output.
● Model coverage is one form of requirements 

coverage. Tests should be effective for 
verification.

Gregory Gay CSCE 747 - Spring 2017 20



Activity

For this model, derive test 
suites that achieve state and 
transition coverage.

Gregory Gay CSCE 747 - Spring 2017 21



Activity - State Coverage

[true,1], [false,2], [false, 65] 

Gregory Gay CSCE 747 - Spring 2017 22



Activity - Transition Coverage

1. [true,1], [false,2], [false, 65], [true, 66], [false, 77], 
[true, 78], [false, 79], [false, 140], [false, 141]

2. [false, 1]

Gregory Gay CSCE 747 - Spring 2017 23



We Have Learned

● If we build models from functional 
specifications, those models can be used to 
systematically generate test cases.

● Helps identify important combinations of 
input to the system.

● Coverage metrics based on the type of 
model guide test selection.

Gregory Gay CSCE 747 - Spring 2017 24



Next Time

● More Model-Based Testing
○ Decision Structures
○ Grammars

● Homework:
○ Homework 2 - questions?

Gregory Gay CSCE 747 - Spring 2017 25


