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Software Testing

● Fundamentally: Try input, see what 
happens.

● We do not just try any input.
● We create test cases to:

○ Find faults
○ Obtain coverage over structural elements
○ Cover combinations of representative values
○ Execute DU pairs
○ Model important use scenarios
○ Establish reliability measurements
○ What do all of these have in common?
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Testing as a Search Problem

● Do you have a goal in mind when testing?
● Can that goal be measured?
● Then you are searching for a test suite that 

achieves that goal. 
○ Out of the near-infinite set of inputs, I would like a 

set of inputs that…
■ obey those properties.
■ cover all branches.
■ try all 2-way pairs of representative values.
■ (etc)
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Testing as a Search Problem

● “I want to find all faults” cannot be checked.
● However, almost all testing goals can.

○ Boolean: Property Satisfied/Not Satisfied
○ Numeric: % Coverage Obtained

● If we can take a candidate solution and 
check whether it meets our goal, then 
computers can search for a solution.

● Many search techniques for automated test 
case generation.
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Search Process

● Choose a solution. If it does not accomplish 
the goal, try another.

● Keep trying new solutions until goal is 
achieved or all solutions are tried.

● The order that solutions are tried is key to 
efficiently finding a solution.

● A search follows some defined strategy. 
○ Called a “heuristic”.
○ Heuristics are used to choose solutions and to 

ignore solutions known to be unviable.
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Graph Search Heuristic Examples

● Arrange nodes into a hierarchy.
○ Breadth-first search explores a graph by trying all 

nodes one level deeper than the current node.
○ Depth-first search explores until backtracking must 

occur.
○ Naive, but easy to understand and implement.

● Attempt to estimate shortest path.
○ A* search finds a path through a graph by

■ calculating the distance travelled
■ examining all “next moves” and estimating which will get 

them closest to the goal.
○ Requires domain-specific scoring function.
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Search Budget

● Default: all solutions will be attempted.
● Most software has near-infinite number of 

inputs. We generally cannot try all solutions 
without constraining the problem.

● Search can be bound by a search budget.
○ Number of attempts made.
○ Time allotted to the search.

● Search techniques try to find a solution 
before the budget expires
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Search Budget

● T/F goals difficult to solve under a budget.
○ May return “unknown” if satisfying solution not found
○ Or, problem must be constrained to be exhaustively 

solvable.
● Measurable goals transform a search into an 

optimization problem.
○ Partial solutions can be returned:

■ “This test suite obtained the highest  branch coverage.”
○ Search for the best solution possible given the 

search budget.
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Optimization

● Search for the best solution possible given 
the search budget.

● The search heuristic becomes important.
○ If time bound, time to create, execute, and evaluate 

a solution is important.
○ If attempt bound, the strategy used to choose 

solutions is important.
○ In practice, efficiency in both categories is desired.

● Many search strategies are possible.
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Random Search

● Randomly formulate a solution. 
○ Choose a class in the system.
○ Generate a series of method calls to that class.

■ Random number of calls, range 1-(max test case size)
■ Methods to call chosen randomly from list of methods.
■ Method parameters generated randomly.

● Random integer, random string, etc.

● If it doesn’t work, try another solution. Keep 
trying until the goal is attained or budget 
expires.
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Random Testing

● Very popular test 
generation method.
○ Extremely fast.
○ Requires no planning.
○ Easy to implement.
○ Easy to understand.
○ All inputs considered 

equal, so no designer 
bias.
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Why Not Random?

12



Range of Search Techniques

● Adaptive Random Testing
○ Ensuring an even distribution of randomly-chosen 

inputs across the search space.
● (Dynamic) Symbolic Execution

○ Combining targeted exhaustive search with a 
random search to generate test cases.

● Metaheuristic Search
○ Using optimization techniques to intelligently 

converge on effective test cases.
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Adaptive Random Testing
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The Input Space

Test Input Data

Test Output Results

Program

Ie

Oe

Faults are sparse in the 
space of all inputs, but 
dense in some parts of the 
space where they appear.

Some tests will pass when 
executed. Others will fail.

If an input causes a failure, 
a similar input is likely to 
also cause a failure.
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Choosing Tests

● Failing inputs form small 
contiguous regions in 
the input space. 
○ If a test fails, similar input 

is also likely to fail.
● Similar effect for most 

test goals.
○ If a test covers a branch, 

similar input is also likely 
to cover that branch.

● We want to find the 
region that meets our 
goal.
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Adaptive Random Tests

● Rather than choosing 
tests completely at 
random, favor input 
diversity. 
○ If a test does not 

meet a goal, new 
input should be very 
different from used 
input.

● Basis of Adaptive 
Random Testing. 
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FSCS-ART Algorithm

● Fixed Size Candidate Set algorithm.
● Makes use of two sets of test cases:

○ Executed Set - the tests already executed that did 
not meet our goal.

○ Candidate Set - a set of random tests that have 
been generated, but not yet tried.

● Initially, generate a test and execute it.
● Then, generate N candidate tests.
● Choose the test furthest from the executed 

test, and execute it. Add that to the set of 
executed tests.
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Performance vs Random Testing

● FSCS-ART generates many more tests than 
are executed.
○ In RT, all tests generated are executed.
○ Execution is more time consuming than generation.

● In theory, ART should find a solution faster 
than pure random testing.
○ ART finds solutions in 50-60% of the time of RT.
○ More tests generated per round, the faster goals are 

attained. Original authors found n=10 to offer best 
effectiveness vs performance ratio.
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Choosing a Candidate Test

● Executed set T = {t1,t2,...,tm}, Candidate set 
C = {c1,c2,...,cn}, C ∩ T = ∅
○ Maxi-min method: We must choose candidate ci 

such that for all j ∈ {1,2,...,n}, 
mini=1

m dist(ci,ti) >= mini=1
m dist(cj,ti)

○ Maxi-sum method: We must choose candidate ci 
such that for all j ∈ {1,2,...,n}, 
sumi=1

m dist(ci,ti) >= sumi=1
m dist(cj,ti)

○ Inputs near boundary of domain are more likely to be 
chosen with maxi-min. 
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Distance Functions

● Important to choose a reliable distance 
function for your input type.

● For numeric values, Euclidean Distance
○ Compare two vectors of numeric variables, a = (a1, 

a2, ... , am), b = (b1, b2, … , bm), 
dist(a,b) = root( sumi=1

m (ai - bi)2)
●  For strings, Levenshtein Distance

○

21



Exclusion Zones

● Introduce exclusion zones - “bubbles” 
around tests that do not meet our goals.
○ Circular zone around that input.

● No inputs may be chosen from those zones.
● Does not require input to be “furthest” away, 

but ensures a minimum level of diversity in 
random choices. 
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Exclusion Zones

● Initially - exclusion zone 
is set to a user-defined 
size N.

● All exclusion zones are 
of equal size.

● Zones shrink as more 
tests are executed.
○ If there are m zones, 

each will have an area of 
N/m, and radius 
root(N/(mᵨ))
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Dynamic Partitioning

● Break input space into regions, and chooses 
a test from the largest unexplored region. 
○ Generate a random test t.
○ Divide the input space into two regions, with one 

containing t. 
○ Choose the largest untested region and generate a 

test in that region.
○ Each time a test is executed, shrink that region, then 

generate a test from the largest remaining region.
● Helps ensure even spread across the input 

space.
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(Dynamic) 
Symbolic Execution
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Symbolic Execution

● Process of building predicates that describe 
which execution paths will be taken and their 
effect on program state.
○ Determines the conditions under which a path can 

be taken.
○ Identifies infeasible paths and paths that can be 

taken when they shouldn’t.
○ Can be used to generate tests targeted at particular 

paths in the system.
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Symbolic Execution

● Symbolic execution builds a set of path 
constraints. 
○ Boolean formulas over the symbolic inputs.
○ Describes the constraints on the input variables that 

must be satisfied to arrive at a program location.
○ At each point, the path constraints are updated with 

any information that can inform the choice of input.
● If a path constraint is unsatisfiable, that path 

is infeasible. 
● If it is satisfiable, any solution of that formula 

is a concrete test case.
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Symbolic Execution Example
1. void swap(int x, int y){

2. if(x > y){

3. x = x + y;

4. y = x - y;

5. x = x - y;

6. if (x - y > 0){

7. assert(false);

8. }

9. }

10. System.out.print(

x+”,”+y);

11. }

1

2

3 10

4

5

6
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x=X, y = Y

x=X, y = Y, X <= Yx=X, y = Y, X > Y

x=X+Y, y = Y, 
X > Y

x=X+Y, y = X, 
X > Y

x=Y, y = X, 
X > Y

x = Y, 
y = X, 
X > Y 
^ Y - X > 0 x=Y, 

y = X, 
X > Y 
^ Y - X <= 0

Three paths:
1. 1,2,10

a. PC: X <= Y
2. 1,2,3,4,5,6,7

a. PC: X > Y ^ Y - X > 0
3. 1,2,3,4,5,6,10

a. PC: X > Y ^ Y - X <= 0

● Test case is obtained by 
finding a solution that 
satisfies the path 
constraint.

● Path 2: x=2, y=1
● Path 3: Unsatisfiable
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Symbolic Execution

● Symbolic execution extracts a logical 
structure from the program.
○ Small, solvable mathematical model that can be 

exhaustively searched (in theory).
● The search problem: 

○ Choose a path constraint.
○ Find values for the input variables that satisfy the 

path constraint.
● Exhaustive search, but limited in scope.
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Symbolic Execution

● Exhaustive search, but limited in scope.
○ Can we find input that executes this path?
○ Boolean outcome - yes or no. No partial solutions.

■ Or, “unknown” if algorithm is unable to solve.
○ Tends to be used to achieve coverage.
○ Can be tied to particular testing goals by changing 

how path constraint is formulated.
■ i.e., MC/DC obligations

● Searching for a solution to a satisfiability 
modulo theories (SMT) problem.
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Satisfiability Modulo Theories

● Searching for a solution to a satisfiability 
modulo theories (SMT) problem.
○ Generalization of Boolean Satisfiability (SAT)

● Express properties as conjunctive normal 
form expressions: 
○ f = (!x2 || x5) && (x1 || !x3 || x4) && 

(x4 || ! x5) && (x1|| x2)
● SAT: variables are boolean. SMT: 

predicates.
○ Can include numeric expressions, as long as a 

model of decidability exists.
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Search Based on SMT

● Express properties as conjunctive normal 
form expressions: 
○ f = (!x2 || x5) && (x1 || !x3 || x4) && 

(x4 || ! x5) && (x1|| x2) 
● Choose a variable and attempt to assign a 

value based on how it affects the CNF 
expression.
○ If we want x2 to be false, choose a value that 

imposes that change.
● Continue until CNF expression is satisfied.

32



Branch & Bound Algorithm

● Set a variable to a particular value.
○ true, false, a numeric value.

● Apply that value to the CNF expression.
● See whether that value satisfies all of the 

clauses that it appears in.
○ If so, assign a value to the next variable.
○ If not, backtrack (bound) and apply the other value.

● Prune branches of the boolean decision tree 
as values are applies.
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Branch & Bound Algorithm

f = (!x2 || x5) && (x1 || !x3 || x4) && (x4 
|| ! x5) && (x1|| x2) 

1. Set x1 to false.
f = (!x2 || x5) && (0 || !x3 || x4) && 
(x4 || ! x5) && (0 || x2) 

2. Set x2 to false.
f = (1 || x5) && (0 || !x3 || x4) && (x4 
|| ! x5) && (0 || 0) 

3. Backtrack and set x2 to true.
f = (0 || x5) && (0 || !x3 || x4) && (x4 
|| ! x5) && (0 || 1) 
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DPLL Algorithm

● Set a variable to a particular value 
○ true, false, a numeric value

● Apply that value to the CNF expression.
● If the value satisfies a clause, that clause is 

removed from the formula. 
● If the variable is negated, but does not 

satisfy a clause, then the variable is 
removed from that clause.

● Repeat until a solution is found.
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DPLL Algorithm

f = (!x2 || x5) && (x1 || !x3 || x4) && (x4 
|| ! x5) && (x1|| x2) 

1. Set x2 to false.
f = (1 || x5) && (x1 || !x3 || x4) && (x4 || ! 
x5) && (x1|| 0)  
f = (x1 || !x3 || x4) && (x4 || ! x5) && (x1) 

2. Set x1 to true.
f = (1 || !x3 || x4) && (x4 || ! x5) && (1) 
f = (x4 || ! x5) 

3. Set x4 to false, then x5 to false.
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Limitations

● Path explosion - too many paths to build 
constraints for.
○ To handle infinite path situations, constraints must 

be discarded in favor of summaries of execution.
● Path complexity

○ Solvers are limited in the scope of the constraints 
they can solve.
■ Cannot solve expressions with nonlinear 

operations such as multiplication, division, sin(x).
■ Cannot solve for complex data structures such as 

trees or pointers.
● Inputs cannot be from an infinite set.
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Dynamic Symbolic Execution

● In parallel, execute symbolic and concrete 
executions.
○ In the concrete execution, log the results of each 

operation that can impact a path condition or the 
values of symbolic variables.

○ Choose random input for the initial concrete 
execution, and execute the program.

○ Symbolically re-execute the program on the path 
followed by the trace and generate path conditions.
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Dynamic Symbolic Execution

● Negate the last constraint and solve the PC 
to generate new input.
○ If an individual predicate is unsolvable, substitute the 

concrete value from the trace.
○ If the PC is unsolvable with the negated constraint, 

negate the next constraint.
● Continue negating one constraint at a time to 

explore new paths.
○ Refine path conditions as new paths are taken.
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DSE Example
typedef struct cell{

int v;

struct cell *next;

} cell;

int f(int v){

return 2*v + 1;

}

int textme(cell *p, int x){

if(x > 0)

if (p != NULL)

if (f(x) == p->v)

if(p->next == p)

ERROR;

return 0;

}

Generate initial input: NULL, random int (236)
Takes T branch of first IF statement.
F branch of second IF statement.

p = P, x = X

X > 0

X > 0 ^ P = NULL

Negate the last predicate, and solve the PC:
(X > 0) ^ !(P = NULL)
Generate new concrete input:
x = 236, p->v = 634, p->next = NULL

X > 0 ^ P != NULL

X > 0 ^ P != NULL
^ ((2X+1) != V)

p = P, p->v = V, 
p->next = N, x = X

Negate the last predicate, and solve the PC:
(X > 0) ^ !(P = NULL) ^ !((2X+1) != V)
Generate new concrete input:
x = 1, p->v = 3, p->next = NULL
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We Have Learned

● When we create test cases, we are usually 
searching for tests that fulfill a goal.
○ Such as code coverage.

● If we have a measurable goal, algorithms 
can perform a search process, automating 
the creation of test inputs.

● Searches can be exhaustive, or bound by a 
search budget.
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We Have Learned

● Simple strategy: randomly generate input.
○ Fast, easy to understand, very bad at finding faults.

● Adaptive random testing applies strategies 
to control the distribution of random test 
generation.
○ Retains benefits of RT, more likely to find faults.

● Dynamic symbolic execution extracts logical 
expressions describing program paths, and 
generates input from those expressions.
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Next Time

● Metaheuristic Search
○ Test Generation
○ Genetic Programming

● Homework:
○ Assignment 4 - due Tuesday!
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