
Testing Fundamentals
CSCE 747 - Lecture 2 - 01/12/2017

Verification and Validation

● Verification - the process of ensuring that an
implementation conforms to its specification.
○ AKA: Under these conditions, does the software

work?
● Validation - the process of ensuring that an

implementation meets the users’ goals.
○ AKA: Does the software work in the real world?

● Proper V&V is the key to producing
dependable software.
○ Testing is the primary verification activity.

Gregory Gay CSCE 747 - Spring 2017 2

We Will Cover

● What is testing?
● Testing definitions:

○ Let’s get the language right.
● What is a test?
● Principles of analysis and testing.
● Testing stages:

○ Unit, Subsystem, System, and Acceptance Testing

Gregory Gay CSCE 747 - Spring 2017 3

Software Testing

● An investigation conducted to provide
information about system quality.

● Analysis of sequences of stimuli and
observations.
○ We create stimuli that the system must react to.
○ We record observations, noting how the system

reacted to the stimuli.
○ We issue judgements on the correctness of of the

sequences observed.

Gregory Gay CSCE 747 - Spring 2017 4

What is a Test?

During testing, we instrument the system under test
and run test cases.

To test, we need:
● Test Input - Stimuli fed to the system.
● Test Oracle - The expected output, and a way to check

whether the actual output matches the expected output.

SUTInput

Output

Expected
Output

Do they match?

Gregory Gay CSCE 747 - Spring 2017 5

Anatomy of a Test Case

● Input
○ Any required input data.

● Expected Output (Oracle)
○ What should happen, i.e., values or exceptions.

● Initialization
○ Any steps that must be taken before test execution.

● Test Steps
○ Interactions with the system, and comparisons

between expected and actual values.
● Tear Down

○ Any steps that must be taken after test execution.

Gregory Gay CSCE 747 - Spring 2016 6

Bugs? What are Those?

● Bug is an overloaded term - does it refer to
the bad behavior observed, the source code
problem that led to that behavior, or both?

● Failure
○ An execution that yields an incorrect result.

● Fault
○ The problem that is the source of that failure.
○ For instance, a typo in a line of the source code.

● When we observe a failure, we try to find the
fault that caused it.

Gregory Gay CSCE 747 - Spring 2017 7

Software Testing

● The main purpose of testing is to find faults:

“Testing is the process of trying to discover
every conceivable fault or weakness in a
work product” - Glenford Myers

● Tests must reflect normal system usage and
extreme boundary events.

Gregory Gay CSCE 747 - Spring 2017 8

Testing Scenarios

● Verification: Demonstrate to the customer
that the software meets the specifications.
○ Tests tend to reflect “normal” usage.
○ If the software doesn’t conform to the

specifications, there is a fault.

● Fault Detection: Discover situations where
the behavior of the software is incorrect.
○ Tests tend to reflect extreme usage.

Gregory Gay CSCE 747 - Spring 2017 9

Axiom of Testing

“Program testing can be used
to show the presence of
bugs, but never their
absence.”

- Dijkstra

Gregory Gay CSCE 747 - Spring 2017 10

Black and White Box Testing

● Black Box (Functional) Testing
○ Designed without knowledge of the program’s

internal structure and design.
○ Based on functional and non-functional requirement

specifications.

● White Box (Structural) Testing
○ Examines the internal design of the program.
○ Requires detailed knowledge of its structure.
○ Tests typically based on coverage of the source

code (all statements/conditions/branches have been
executed)

Gregory Gay CSCE 747 - Spring 2017 11

Testing Stages

Testing Stages

● Unit Testing
○ Testing of individual methods of a class.
○ Requires design to be final, so usually written and

executed simultaneously with coding of the units.
● Module Testing

○ Testing of collections of dependent units.
○ Takes place at same time as unit testing, as soon as

all dependent units complete.
● Subsystem Integration Testing

○ Testing modules integrated into subsystems.
○ Tests can be written once design is finalized, using

SRS document.
Gregory Gay CSCE 747 - Spring 2017 13

Testing Stages

● System Integration Testing
○ Integrate subsystems into a complete system, then

test the entire product.
○ Tests can be written as soon as specification is

finalized, executed after subsystem testing.
● Acceptance Testing

○ Give product to a set of users to check whether it
meets their needs. Can also expose more faults.

○ Also called alpha/beta testing.
○ Acceptance planning can take place during

requirements elicitation.

Gregory Gay CSCE 747 - Spring 2017 14

The V-Model of Development

Requirements
Elicitation

System
Specification

Architectural
Design

Detailed
Design

Unit
Development
and Testing

Subsystem
Integration

Testing

System
Integration

Testing

Acceptance
Testing

Operation and
Maintenance

Acceptance
Test Plan

System
Integration
Test Plan

Subsystem
Integration
Test Plan

Unit Test Plan

Gregory Gay CSCE 747 - Spring 2017 15

Unit Testing

● Unit testing is the process of testing the
smallest isolated “unit” that can be tested.
○ Often, a class and its methods.
○ A small set of dependent classes.

● Test input should be calls to methods with
different input parameters.

● For a class, tests should:
○ Test all “jobs” associated with the class.
○ Set and check the value of all attributes associated

with the class.
○ Put the class into all possible states.

Gregory Gay CSCE 747 - Spring 2017 16

Unit Testing - WeatherStation

When writing unit tests for
WeatherStation, we need:
● Set and check identifier.
● Tests for each “job” performed by

the class.
○ Methods that work together to

perform that class’ responsibilities.
● Tests that hit each outcome of

each “job” (error handling, return
conditions).

WeatherStation

identifier

testLink()
reportWeather()
reportStatus()
restart(instruments)
shutdown(instruments)
reconfigure(commands)

Gregory Gay CSCE 747 - Spring 2017 17

Unit Testing - Object Mocking

Components may depend on
other, unfinished (or untested)
components. You can mock
those components.
● Mock objects have the

same interface as the real
component, but are
hand-created to simulate
the real component.

● Can also be used to
simulate abnormal
operation or rare events.

WeatherData

temperature
windSpeed
windDirection
pressure
lastReadingTime

collect()
summarize(time)

Thermometer

ther_identifier
temperature

get()
shutdown()
restart()

Mock_Thermometer

ther_identifier
temperature

get()
shutdown()
restart()

get(){
return 98;

}

Gregory Gay CSCE 747 - Spring 2017 18

Subsystem Testing

● Most software works by combining multiple,
interacting components.
○ In addition to testing components independently, we

must test their integration.
● Functionality performed across components

is accessed through a defined interface.
○ Therefore, integration testing focuses on showing

that functionality accessed through this interface
behaves according to the specifications.

Gregory Gay CSCE 747 - Spring 2017 19

Subsystem Testing

We have a subsystem made
up of A, B, and C. We have
performed unit testing...
● However, they work together

to perform functions.
● Therefore, we apply test

cases not to the classes, but
to the interface of the
subsystem they form.

● Errors in their combined
behavior result are not
caught by unit testing.

A

C

B

Test Cases

Gregory Gay CSCE 747 - Spring 2017 20

Interface Types

● Parameter Interfaces
○ Data is passed from one component to another.
○ All methods that accept arguments have a

parameter interface.
○ If functionality is triggered by a method call, test

different parameter combinations to that call.
● Procedural Interfaces

○ When one component encapsulates a set of
functions that can be called by other components.

○ Controls access to subsystem functionality. Thus, is
important to test rigorously.

Gregory Gay CSCE 747 - Spring 2017 21

Interface Types

● Shared Memory Interfaces
○ A block of memory is shared between components.
○ Data is placed in this memory by one subsystem and

retrieved by another.
○ Common if system is architected around a central

data repository.
● Message-Passing Interfaces

○ Interfaces where one component requests a service
by passing a message to another component. A
return message indicates the results of executing the
service.

○ Common in parallel systems, client-server systems.

Gregory Gay CSCE 747 - Spring 2017 22

Interface Errors

● Interface Misuse
○ A calling component calls another component and makes

an error in the use of its interface.
○ Wrong type or malformed data passed to a parameter,

parameters passed in the wrong order, wrong number of
parameters.

● Interface Misunderstanding
○ Incorrect assumptions made about the called component.
○ A binary search called with an unordered array.

● Timing Errors
○ In shared memory or message passing - producer of data

and consumer of data may operate at different speeds,
and may access out of data information as a result.

Gregory Gay CSCE 747 - Spring 2017 23

System Testing

Systems are developed as interacting
subsystems. Once units and subsystems are
tested, the combined system must be tested.
● Advice about interface testing still important here (you

interact with a system through some interface).
● Two important differences:

○ Reusable components (off-the-shelf systems) need
to be integrated with the newly-developed
components.

○ Components developed by different team members
or groups need to be integrated.

Gregory Gay CSCE 747 - Spring 2017 24

Acceptance Testing

Once the system is internally tested, it should
be placed in the hands of users for feedback.
● Users must ultimately approve the system.
● Many faults do not emerge until the system

is used in the wild.
○ Alternative operating environments.
○ More eyes on the system.
○ Wide variety of usage types.

● Acceptance testing allows users to try the
system under controlled conditions.

Gregory Gay CSCE 747 - Spring 2017 25

Acceptance Testing Types

Three types of user-based testing:
● Alpha Testing

○ A small group of users work closely with
development team to test the software.

● Beta Testing
○ A release of the software is made available to a

larger group of interested users.
● Acceptance Testing

○ Customers decide whether or not the system is
ready to be released.

Gregory Gay CSCE 747 - Spring 2017 26

Acceptance Testing Stages

● Define acceptance criteria
○ Work with customers to define how validation will be

conducted, and the conditions that will determine
acceptance.

● Plan acceptance testing
○ Decide resources, time, and budget for acceptance

testing. Establish a schedule. Define order that features
should be tested. Define risks to testing process.

● Derive acceptance tests.
○ Design tests to check whether or not the system is

acceptable. Test both functional and non-functional
characteristics of the system.

Gregory Gay CSCE 747 - Spring 2017 27

Acceptance Testing Stages

● Run acceptance tests
○ Users complete the set of tests. Should take place in

the same environment that they will use the
software. Some training may be required.

● Negotiate test results
○ It is unlikely that all of the tests will pass the first

time. Developer and customer negotiate to decide if
the system is good enough or if it needs more work.

● Reject or accept the system
○ Developers and customer must meet to decide

whether the system is ready to be released.

Gregory Gay CSCE 747 - Spring 2017 28

Software Dependability

Dependability Properties

● When performing verification, we want to
prove four things about the system:
○ That it is correct.
○ That it is reliable.
○ That it is safe.
○ That is is robust.

Gregory Gay CSCE 747 - Spring 2017 30

Correctness

● A program is correct if it is consistent with
its specifications.
○ A program cannot be 30% correct. It is either correct

or not correct.
○ A program can easily be shown to be correct with

respect to a bad specification. However, it is often
impossible to prove correctness with a good,
detailed specification.

○ Correctness is a goal to aim for, but is rarely
provably achieved.

Gregory Gay CSCE 747 - Spring 2017 31

Reliability

● A statistical approximation of correctness.
● Reliability is a measure of the likelihood of

correct behavior from some period of
observed behavior.
○ Time period, number of system executions
○ Measured relative to a specification and a usage

profile (expected pattern of interaction).
■ Reliability is dependent on how the system is

interacted with by a user.

Gregory Gay CSCE 747 - Spring 2017 32

Safety

● Two flaws with correctness/reliability:
○ Success is relative to the strength of the

specification.
○ Severity of a failure is not considered. Some failures

are worse than others.
● Safety is the ability of the software to avoid

hazards.
○ Hazard = any undesirable situation.
○ Relies on a specification of hazards.

■ But is only concerned with avoiding hazards, not
other aspects of correctness.

Gregory Gay CSCE 747 - Spring 2017 33

Robustness

● Correctness and reliability are contingent on
normal operating conditions.

● Software that is “correct” may still fail when
the assumptions of its design are violated.
How it fails matters.

● Software that “gracefully” fails is robust.
○ Consider events that could cause system failure.
○ Decide on an appropriate counter-measure to

ensure graceful degradation of services.

Gregory Gay CSCE 747 - Spring 2017 34

Dependability Property Relations

Gregory Gay CSCE 747 - Spring 2017 35

Reliable Correct Safe Robust

Correct, but not safe.
Specification is inadequate

Safe, but not correct.
Annoying failures can occur.

Robust, but not safe. Catastrophic
failures can occur.

Reliable, but not correct.
Catastrophic failures can occur.

Principles of
Analysis and Testing

Basic Principles

● Engineering disciplines are guided by core
principles.
○ Provide rationale for defining, selecting, and

applying techniques and methods.
● Testing and analysis are guided by six

principles:
○ Sensitivity, redundancy, restriction, partition,

visibility, and feedback.

Gregory Gay CSCE 747 - Spring 2017 37

Sensitivity

● Faults may lead to failures, but faulty
software might not always fail.

● Sensitivity Principle: It is better to fail every
time rather than only on some executions.
○ Earlier a fault is detected, the lower the cost to fix.

■ Especially once software has been released.
○ A fault that triggers a failure every execution is

unlikely to survive testing.
○ The goal of sensitivity - try to make faults easier to

detect by making them cause failure more often.

Gregory Gay CSCE 747 - Spring 2017 38

Sensitivity

● Principle can be applied at design & code,
testing, and environmental levels.
○ Design & Code: Change how the program reacts to

faults.
○ Testing: Choose a technique more likely to force a

failure when a fault exists.
○ Environmental: Reduce the impact of environmental

factors on the results.

Gregory Gay CSCE 747 - Spring 2017 39

Sensitivity - Design

● Take operations
known to potentially
cause failures and
ensure that they
will fail when used
improperly.

● Ex: C string
manipulation.

Gregory Gay CSCE 747 - Spring 2017 40

strcpy(target,source);

// May cause failure if source
string too long.

void stringCopy(char *target, const
char *source, int howBig){

assert(strlen(source) < howBig);

// Check whether source string is
too long.

strcpy(target,source);

// If length ok, copy the string.

}

Sensitivity - Test and Analysis

● Choose fault classes and favor techniques that
cause faults to manifest in failures.

● Deadlocks/race conditions:
○ Testing cannot try enough combinations.
○ Model checking/reachability analysis are suited to

these problems.
● Test adequacy criteria specify rules on how

certain types of statements are executed.
○ Some are correlated to types of faults - i.e., condition

coverage is likely to uncover problems with boolean
expressions.

Gregory Gay CSCE 747 - Spring 2017 41

Redundancy

● If one part of a software artifact constrains
the content of another, it is possible to check
them for consistency.

● In testing, we want to detect differences
between intended and actual behavior. We
can better do this by adding redundant
statements of intent.
○ Make clear how code should be executed, then

ensure that your intentions are not violated.

Gregory Gay CSCE 747 - Spring 2017 42

Redundancy

● Ex: Type Checking
○ Type declaration is a statement of intent (this

variable is an integer).
■ Redundant with how it is used in the code.

○ Type declaration constrains the code, so a
consistency check can be applied.

● Java requires that methods explicitly declare
exceptions that can be thrown.

● Many analysis tools check consistency
between code and other project artifacts.

Gregory Gay CSCE 747 - Spring 2017 43

Restriction

● When there is no effective or cheap way to
check a property, sometimes one can solve
a different, more restrictive property.
○ Or limit the check to a smaller, more restrictive set

of programs.
● If the restrictive property encompasses the

complex property, then we know that the
complex property will hold.
○ That is, being overprotective avoids bad situations.

Gregory Gay CSCE 747 - Spring 2017 44

Restriction
static void questionable{

 int k;

for (int i=0; i < 10; ++i){

if(condition(i)){

k=0;

}else{

k += i;

}

}

}

Gregory Gay CSCE 747 - Spring 2017 45

● Can k ever be
uninitialized the first time
i is added to it?

● This is an undecidable
question.

● However, Java avoids
this situation by
enforcing a simpler
property.
○ No paths can compile

with potentially
uninitialized references.

Partition

● AKA: Divide and conquer.
● The best way to solve a problem is to

partition it into smaller problems to be
solved independently.
○ Divide testing into stages (unit, subsystem, system).
○ Many analysis tools built around construction and

analysis of a model.
■ First, simplify the system to make proof feasible.
■ Then, prove the property on the model.

Gregory Gay CSCE 747 - Spring 2017 46

Visibility and Observability

● Visibility is the ability to measure progress
or status against goals.
○ Clear knowledge about the current state of

development or testing.
○ Ability to measure dependability against targets.

● Observability is the ability to extract useful
information from a software artifact.
○ Be able to understand an artifact, to make changes

to it, and to observe and understand its execution.
○ Equality checks, ability to convert data structures to

text encodings.

Gregory Gay CSCE 747 - Spring 2017 47

Feedback

● Be able to apply lessons from experience in
process and techniques.
○ In systematic inspection and code walkthroughs, use

past experience to write and refine checklists.
○ In testing, prioritize test efforts based on likelihood of

fault classes.
○ Use experience in acceptance testing in creating

user surveys.

Gregory Gay CSCE 747 - Spring 2017 48

We Have Learned

● What is testing?
● Testing terminology and definitions.
● Testing stages include unit testing,

subsystem testing, system testing, and
acceptance testing.

● We want testing to result in systems that are
correct, reliable, safe, and robust.

Gregory Gay CSCE 747 - Spring 2017 49

We Have Learned

● Six principles guide analysis and testing:
○ Sensitivity: better to fail every time than sometimes.
○ Redundancy: make intentions explicit.
○ Restriction: make the problem easier.
○ Partition: divide and conquer.
○ Visibility: make information accessible.
○ Feedback: apply lessons from experience to refine

techniques and approaches.

Gregory Gay CSCE 747 - Spring 2017 50

Next Time

● Finite Models
○ Representations of programs that we can use for

analysis.

● Reading:
○ Chapter 5

● Team selection - due January 19th.

Gregory Gay CSCE 747 - Spring 2017 51

