
Midterm Review
CSCE 747 - Lecture 13 - 03/06/2018

We Will Cover

● You have a midterm on Thursday
○ 75 minutes
○ Closed-book, closed-notes.
○ Covers all content to date.

● There is a practice exam on the course site.
○ Did you try it?

● Let’s go over it!

2

Question 1
● A test suite that meets a stronger coverage criterion will

find any defects that are detected by any test suite that
meets only a weaker coverage criterion
○ True
○ False

● A test suite that is known to achieve Modified
Condition/Decision Coverage (MC/DC) for a given
program, when executed, will exercise, at least once:
○ Every statement in the program.
○ Every branch in the program.
○ Every LCSAJ in the program.
○ Every path in the program.

3

Question 1
● A test suite that meets a stronger coverage criterion will

find any defects that are detected by any test suite that
meets only a weaker coverage criterion
○ True
○ False

● A test suite that is known to achieve Modified
Condition/Decision Coverage (MC/DC) for a given
program, when executed, will exercise, at least once:
○ Every statement in the program.
○ Every branch in the program.
○ Every LCSAJ in the program.
○ Every path in the program.

4

Question 1
● Possible sources of information for functional testing

include:
○ Requirements Specification
○ User Manuals
○ Program Source Code
○ Domain Experts

● Category-Partition Testing technique requires
identification of:
○ Parameter characteristics
○ Representative values
○ Def-Use pairs
○ Pairwise combinations

5

Question 1
● Possible sources of information for functional testing

include:
○ Requirements Specification
○ User Manuals
○ Program Source Code
○ Domain Experts

● Category-Partition Testing technique requires
identification of:
○ Parameter characteristics
○ Representative values
○ Def-Use pairs
○ Pairwise combinations

6

Question 1
● Validation activities can only be performed once the complete system has

been built.
○ True
○ False

● Statement coverage criterion never requires as many test cases to satisfy
as branch coverage criterion.
○ True
○ False

● Requirement specifications are not needed for generating inputs to satisfy
structural coverage of program code.
○ True
○ False

● A system that fails to meet its user’s needs may still be:
○ Correct with respect to its specification.
○ Safe to operate.
○ Robust in the presence of exceptional conditions.
○ Considered to have passed verification.

7

Question 1
● Validation activities can only be performed once the complete system has

been built.
○ True
○ False

● Statement coverage criterion never requires as many test cases to satisfy
as branch coverage criterion.
○ True
○ False

● Requirement specifications are not needed for generating inputs to satisfy
structural coverage of program code.
○ True
○ False

● A system that fails to meet its user’s needs may still be:
○ Correct with respect to its specification.
○ Safe to operate.
○ Robust in the presence of exceptional conditions.
○ Considered to have passed verification.

8

Question 2
Consider the following situation:
After carefully and thoroughly developing a collection of
requirements-based tests and running your test suite, you
determine that you have achieved only 60% statement
coverage. You are surprised (and saddened), since you
had done a very thorough job developing the
requirements-based tests and you expected the result to be
closer to 100%.

9

Question 2
Briefly describe two (2) things that might have happened to
account for the fact that 40% of the code was not exercised
during the requirements-based tests.

● Poor job choosing test cases.
● Missing requirements.
● Dead or inactive code.
● Error-handling.

○ Code used only in special cases.

10

Question 2
Should you, in general, be able to expect 100% statement
coverage through thorough requirements-based testing
alone (why or why not)?

● No.
● There are almost always special cases not covered by

requirements.
○ Code optimizations, debug code, exception

handling.

11

Question 2
Some structural criteria, such as MC/DC, prescribe
obligations that are impossible to satisfy. What are two
reasons why a test obligation may be impossible to satisfy?

● Impossible combination of conditions
● Defensive programming (situations that may not

happen in practice are planned for).
● Other situations that result in unused code (i.e., code

implemented for future use that is not currently
reachable).

12

Question 3
In class we discussed the importance of defining a test
case for each requirement. What are the two primary
benefits of defining this test case?

● Helps when performing integration testing. Can build
test cases early, apply to code once it is written.

● Forces us to write testable requirements.

13

Question 4
The airport connection check is part of a travel reservation system. It checks
the validity of a single connection between two flights in an itinerary.

validConnection(Flight arrivingFlight, Flight departingFlight)
returns ValidityCode.

A Flight is a data structure consisting of:
● A unique identifying flight code (string, three characters followed by four

numbers).
● The originating airport code (three character string).
● The scheduled departure time (in universal time).
● The destination airport code (three character string).
● The scheduled arrival time (in universal time).

There is also a flight database, where each record contains:
● Three-letter airport code (three character string).
● Airport country (two character string).
● Minimum connection time (integer, minimum number of minutes that must

be allowed for flight connections).
14

Question 4
A Flight is a data structure consisting of:
● A unique identifying flight code (string, three characters followed by four

numbers).
● The originating airport code (three character string).
● The scheduled departure time (in universal time).
● The destination airport code (three character string).
● The scheduled arrival time (in universal time).

There is also a flight database, where each record contains:
● Three-letter airport code (three character string).
● Airport country (two character string).
● Minimum connection time (integer, minimum number of minutes that must

be allowed for flight connections).

Identify categories and choices for the parameters of this function.

15

Question 4 - Solution
Parameter: Arriving flight

Flight code:
● malformed
● not in database
● valid

Originating airport code:
● malformed
● not in database
● valid city

Scheduled departure time:
● syntactically malformed
● out of legal range
● legal

Destination airport (transfer
airport):

● malformed
● not in database
● valid city

Scheduled arrival time (tA):
● syntactically malformed
● out of legal range
● legal

Parameter: Departing flight

Flight code:
● malformed
● not in database
● valid

Originating airport code:
● malformed
● not in database
● differs from transfer airport
● same as transfer airport

Scheduled departure time:
● syntactically malformed
● out of legal range
● before arriving flight time (tA)
● between tA and tA + minimum

connection time (CT)
● equal to tA + CT
● greater than tA + CT

Destination airport code:
● malformed
● not in database
● valid city

Scheduled arrival time:
● syntactically malformed
● out of legal range
● legal

Parameter: Database record

This parameter refers to the database
time record corresponding to the
transfer airport.

Airport code:
● malformed
● not found in database
● valid

Airport country:
● malformed
● invalid
● valid

Minimum connection time:
● not found in database
● invalid
● valid

16

Question 5
● Draw the control-flow

graph for this method.
● Develop test input that will

provide statement
coverage.

● Develop test input that will
provide branch coverage.

● Develop test input that will
provide path coverage.

int findMax(int a, int b, int c)
{

int temp;

if (a>b)

temp=a;

else

temp=b;

if (c>temp)

temp = c;

return temp;

}

17

Question 5 - Solution
1. int findMax(int a, int b, int c) {

2. int temp;

3. if (a>b)

4. temp=a;

5. else

6. temp=b;

7. if (c>temp)

8. temp = c;

9. return temp;

10. }

2

3

6

4
T

F

8

7

9

T F

Statement:
(3,2,4), (2,3,4)

Branch:
(3,2,4), (3,4,1)

Path:
(4,2,5), (4,2,1), (2,3,4),
(2,3,1)

18

Question 5 - Solution
● Modify the program to

introduce a fault such that
even path coverage could
miss the fault.

int findMax(int a, int b, int c)
{

int temp;

if (a>b)

temp=a;

else

temp=b;

if (c>temp)

temp = c;

return temp;

}

Use (a >b+1) instead of (a>b) and
the test input from the last slide:
(4,2,5), (4,2,1), (2,3,4), (2,3,1)
will not reveal the fault.

19

Question 6

● Identify all DU
pairs and write
test cases to
achieve All DU
Pair Coverage.
○ Hint - remember

that there is a loop.

1. int doSomething(int x, int y)

2. {

3. while(y > 0) {

4. if(x > 0) {

5. y = y - x;

6. }else {

7. x = x + 1;

8. }

9. }

10. return x + y;

11. }

20

Question 6
1. int doSomething(int x, int y)

2. {

3. while(y > 0) {

4. if(x > 0) {

5. y = y - x;

6. }else {

7. x = x + 1;

8. }

9. }

10. return x + y;

11. }

Variable Defs Uses

x 1, 7 4, 5, 7, 10

y 1, 5 3, 5, 10

Variable D-U Pairs

x (1, 4), (1, 5), (1, 7), (1, 10),
(7, 4), (7, 5), (7, 7), (7, 10)

y (1, 3), (1, 5), (1, 10), (5, 3),
(5, 5), (5, 10)

21

Question 6
1. int doSomething(int x, int y)

2. {

3. while(y > 0) {

4. if(x > 0) {

5. y = y - x;

6. }else {

7. x = x + 1;

8. }

9. }

10. return x + y;

11. }

Variable D-U Pairs

x (1, 4), (1, 5), (1, 7), (1, 10),
(7, 4), (7, 5), (7, 7), (7, 10)

y (1, 3), (1, 5), (1, 10), (5, 3),
(5, 5), (5, 10)

Test 1: (x = 1, y = 2)
Covers lines 1, 3, 4, 5, 3, 4, 5, 3, 10

Test 2: (x = -1, y = 1)
Covers lines 1, 3, 4, 6, 7, 3, 4, 6, 7, 3, 4, 5, 3, 10
Test 3: (x = 1, y = 0)
Covers lines 1, 3, 8

22

Question 7
In a directed graph with a designated exit node, we say that
a node m post-dominates another node n, if m appears on
every path from n to the exit node.

Let us write m pdom n to mean that m post-dominates n,
and pdom(n) to mean the set of all post-dominators of n,
i.e., {m | m pdom n}.

23

Question 7
1. Does b pdom b hold true for all b?
2. Can both a pdom b and b pdom a hold true for two

different nodes a and b?

1. Yes. Each node must appear on every path to the exit
from itself.

2. Not if they are different nodes. If a pdom b, then b must
be on all paths from a to the exit. Node a cannot appear
after b at the same time.

24

Question 7
3. If both c pdom b and b pdom a hold true, what can you
say about the relationship between c and a?
4. If both c pdom a and b pdom a hold true, what can you
say about the relationship between c and b?

3. c pdom a. Node b appears on all paths from a to the exit.
Node c must appear on the subpath from b to the exit.
4. Either c pdom b or b pdom c. Both b and c must appear
on all paths from a to the exit. One will pdom the other.

25

Question 8
In class, we discussed various forms of oracles – such as a
model, a second implementation, properties, self-checks, a
team of experts, etc.

Provide a comparative analysis of three different kinds of
oracles of your choice, defining what they are and
addressing their strengths and weaknesses with respect to
key attributes relevant to the verification process (e.g., cost,
accuracy, completeness).

26

Question 8
● Expected-Value Oracle: Exact definition of the

expected output given a concrete input. Most common
form of oracle.
expected = 5;

actual = function(x);

assert(expected == actual);

● Self-Check Oracle: A property that must be met by the
output, regardless of the value of the output.
actual = function(x);

assert (actual > 0);

● Model: A finite-state machine representing the abstract
behavior of a function in a variety of situations.

27

Question 8
● Cost (per-test) (least to greatest):

○ expected value, self-check, model
○ Expected value very cheap, but only work for one input. Models

very expensive, but can handle almost any input.
● Completeness (least to greatest):

○ expected value, self-check, model
○ Self-checks, models can account for more scenarios.

● Accuracy (least to greatest):
○ self-check, model, expected value
○ Self-checks only catch faults related to specified properties.

28

Question 9

● Explain the difference between verification
and validation.

● Which of these is considered harder? Why?

29

Question 9

● Explain the difference between verification
and validation.
○ Validation: Does the system meet the customer’s

needs? “Are we building the right product?”
○ Verification: Does the system meet the specifications

we laid out? “Are we building the product right?”
● Which of these is considered harder? Why?

○ Validation is harder.
○ It requires that we understand the customer’s actual

desires. They might not have told us those, or
changed their minds.

30

Question 10

Describe the key difference between black-box
testing and white-box testing.

31

Question 10
Black-box testing treats the program as a machine that
accepts input and issues output, with no visibility into its
internal workings.
● Tests are based on requirements and specifications.
● You do not know what classes or methods are in the

code, and you do now know what objects exist at
runtime.

White-box involves testing the independent logic paths with
full knowledge of the source code. You do not have full
knowledge of the intended functionality (white box tests
cannot look for unimplemented code).
 32

Question 11

When we discuss software testing, we refer to
Faults and Failures. Please briefly describe
what a Fault is and what a Failure is. Make
sure to point out the difference between a Fault
and a Failure.

33

Question 11
● A Fault is a problem with the implementation. It is

something that is missing, extra, or erroneous.
● A Failure is an incorrect execution of the software; we

get an output we did not expect.
● A Failure is the manifestation of a Fault, if the execution

executes the Fault and the corrupted state propagates
to the output, we can observe it as a Failure.

34

Question 12
Why is it so important to include boundary values in your
black-box test-data?
● Make sure your answer includes a brief description of

what a boundary value is.

35

Question 12
Boundary values are the inputs that are on or close to the
boundaries between the input equivalence partitions as well
as special values we know are tricky to handle correctly.
● We know from experience that programmers make

mistakes with boundary values.
● Thus we should include test cases to see if these cases

are handled correctly.
○ Include values such as zero, very large, very small,

empty list, max long list, etc.

36

Any other questions?

Next Class:
● The Midterm

Next Week:
● Spring Break

The Week After:
● Model-Based Test Creation

37

