
Investigating Faults Missed by Test Suites Achieving
High Code Coverage

Amanda Schwartz, Daniel Puckett

University of South Carolina Upstate

aschwar2@uscupstate.edu,dpuckett@email.uscupstate.edu

Ying Meng, Gregory Gay

University of South Carolina

ymeng@email.sc.edu, greg@greggay.com

Abstract

Code coverage criteria are commonly used to determine the adequacy of a test

suite. However, studies investigating code coverage and fault-finding capabilities

have mixed results. Some studies have shown that creating test suites to satisfy

coverage criteria has a positive effect on finding faults, while other studies do

not. In order to improve the fault-finding capabilities of test suites, it is essential

to understand what is causing these mixed results. In this study, we investigated

one possible source of variation in the results observed: fault type. Specifically,

we studied 45 different types of faults and evaluated how effectively human-

created test suites with high coverage percentages were able to detect each type

of fault. Our results showed, with statistical significance, there were specific

types of faults found less frequently than others. However, improvements in the

formulation and selection of test oracles could overcome these weaknesses. Based

on our results and the types of faults that were missed, we suggest focusing on

the strength of test oracles along with code coverage to improve the effectiveness

of test suites.

Keywords: Code Coverage, Automated Testing, Software Testing, Test Suite

Effectiveness

Preprint submitted to Journal of Systems and Software June 11, 2018



1. Introduction

In order to ensure software quality, it is essential that the software is tested

thoroughly. However, what exactly constitutes thorough testing can be subjec-

tive. As developers lack knowledge of the faults that may reside in their systems,

guidance and a means of judging test suite adequacy is required. Currently, one

of the most popular ways to evaluate the adequacy of a test suite is through the

use of code coverage criteria.

Code coverage criteria evaluate test suites by examining how well they cover

structural elements such as functions, statements, branches, and/or conditions

of a software system [1]. Each criterion establishes a set of test obligations

over the class-under-test (CUT) that must be fulfilled in order to satisfy the

criterion. Coverage criteria are commonly used in both academic research and

industry, as they are easy to understand, establish clear guidelines and stopping

conditions for testing, and are well-supported across a variety of programming

languages [2]. Consequently, the confidence in code coverage being a proper

method of evaluating test suites has become high in the software testing com-

munity. In fact, the confidence is so high that in some domains, such as avion-

ics, evaluating test suites through the use of code coverage is legally required

[3, 4]. Many research studies also validate proposed techniques by their ability

to achieve some level of code coverage (e.g. [5, 6]).

Contrary to the widespread use and acceptance of code coverage being an

adequate measure of test suite effectiveness, studies investigating the relation-

ship between code coverage and fault-finding capabilities do not consistently

support this. Some studies have shown that generating test suites to satisfy

code coverage criteria has a positive effect on finding faults (e.g. [7, 8, 9]), while

other studies do not (e.g. [10, 11]). To better evaluate whether code coverage

is a proper method of evaluating test suites, it is important to understand why

there are such differences in these findings.

In order to accept high code coverage as an indicator for a test suite’s ability

to find faults, there should be consistent evidence that test suites with high

2



code coverage are capable of finding more faults than test suites with lower

code coverage. However, since the research does not always support this, it

is important to investigate whether there are particular factors that affect the

ability of a test suite achieving high code coverage to find faults. Unfortunately,

very little work has been done in this area. Few studies were found [12, 4, 13]

that identify factors that influence the relationship between code coverage and

fault detection. These studies provide some insight—particularly around the

influence of program structure—but cannot completely explain the different

findings in the studies investigating code coverage and fault detection. More

research needs to be conducted to investigate this important issue.

In our previous work [14], we began to investigate the impact particular fault

types had on the relationship between code coverage and fault finding effective-

ness, as modeled through the use of mutation testing—the seeding of synthetic

faults into the CUT. Specifically, we were interested in whether there were par-

ticular fault types that went undetected more frequently than other fault types

when programs are evaluated by test suites that achieve high code coverage. Our

research showed that the rate of fault detection varied significantly according

to fault type. We also noticed that there were certain types of faults consis-

tently found less frequently than others. These were interesting findings that

could inspire future research on why these particular fault types were found less

frequently. However, this study was limited in two ways. First, only class-level

mutation operators were considered. Second, there were many mutation oper-

ators that did not produce enough mutants to have enough data to perform a

statistical analysis or form any solid conclusions. We address these limitations

in this paper. Specifically, this paper makes the following contributions:

• The paper is extended to consider 19 Traditional Mutant Operators in

addition to the original 26 Class Level Mutation Operators considered in

our previous work [14].

• An additional 25,100 Class-Level mutants were created to supplement the

15,834 Class-Level mutants created in our previous work, for a total of

3



40,934 Class-Level mutants.

• A total of 122,985 Traditional mutants were created and analyzed.

• Statistical tests were performed and presented to determine whether there

is a statistical significance to the faults that go undetected more frequently

than other faults.

• A discussion of the fault types identified as outliers by the statistical tests

is included.

• A suggestion, based on the nature of the faults identified as outliers, on

how to improve test suites and test suite evaluation techniques is provided.

Our results identified that two types of mutants were found disproportion-

ately often—AORB (Arithmetic Operator Replacement) and ROR (Relational

Operator Replacement). However, four types of mutants were found less often

than expected: AOIS (Arithmetic Operator Insertion), PCI (Type Case Op-

erator Insertion), EAM (Accessor Method Change), and AODU (Arithmetic

Operator Deletion). Test oracles that more thoroughly inspect internal state

would aid in revealing such faults. Ultimately, code coverage alone does not

ensure that faults are triggered and detected, and the selection of input and

oracle have a dual influence on the effectiveness of a test suite. More attention

should be given to the thoroughness of the selected oracle, and to the variables

that are monitored and checked by the oracle.

The rest of the paper is organized as follows. Section 2 presents background

information and related work. Section 3 explains our experimental procedures.

Section 4 presents the results of our experiment. A discussion of our results is

presented in Section 5. And finally, conclusions are discussed in Section 6.

2. Background and Related Work

Software testing is extremely important to the development process as the

means of ensuring that software has the correct functionality and is not defec-

4



tive. However, software testing can be very time consuming and costly. There-

fore, a significant amount of time and effort has been spent to identify ways

to reduce the cost of software testing. Much of this attention has been spent

researching automated software testing procedures. As a result, many different

testing platforms and methods have been proposed, developed, and evaluated

(e.g.[15, 16, 17]) and a great deal of progress has been made on reducing the

time necessary for software testing. By reducing time, the hope is it will also

reduce cost. However, the cost will only be reduced if testing continues to be

effective at finding faults. Missed faults are extremely costly, and any reduction

in cost resulting from the decreased time would be lost with the increase of costs

associated with missed faults. Therefore, automated testing methods need to

be evaluated to be sure they are effective at finding faults.

The most commonly used metric to evaluate automated test suites is to use

some form of code coverage criteria. Coverage criteria reports a percentage

according to how much source code is executed by the test suites. The exact

calculation depends on the coverage method used. For example, line coverage

is a very simple coverage metric that simply reports the percentage of lines

of code that are covered by the test suite. Another popular coverage metric,

branch coverage, adds an additional requirement that at each conditional both

the true path and the false path will be executed.

Coverage criteria has become widely accepted in the software testing com-

munity as an adequate measure of test suite effectiveness [2]. It is used to

validate new automated testing methods (e.g. [18, 19, 20]), used to compare

testing methods based on level of coverage (e.g. [21, 22, 23]), and is used in

many domains to determine whether a test suite as adequate. In fact, in some

safety cricital domains, such as avionics, code coverage is legally required to

determine the adequacy of a test suite [3].

Since coverage criteria is frequently the standard for many in terms of eval-

uating test suites, it is important to make sure code coverage actually is a good

indicator of test suite effectiveness. Some recent research has been conducted

to evaluate whether increasing code coverage also increases a test suite’s ability

5



to find faults. The results of this research has been mixed. Some studies show

achieving high code coverage is a good indicator for fault-finding capabilities,

while other studies do not.

Studies which provide support for coverage criteria being an adequate mea-

sure of test suite effectiveness show a correlation between code coverage and

fault-finding capabilities. For example, early work by Frankl and Weiss [24]

shows a correlation between test suite effectiveness and all-use and decision

coverage criteria. Cai and Lyu [25] found a moderate correlation between fault-

finding capabilities and four different code coverage criteria. Frate et. al [26]

report a study which finds a higher correlation between test suite effectiveness

and block coverage than there is between test suite effectiveness and test suite

size. Gligoric et. al [27] studied a total of 26 programs and found that test suite

effectiveness was correlated with coverage, and reported branch coverage as per-

forming the best. A recent study by Kochhar et. al [28] evaluated two industrial

programs and found a correlation between code coverage and faults detected.

In our past work examining the factors that indicated a high likelihood of fault

detection, we found that high levels of code coverage had a stronger correlation

to the likelihood of fault detection than the majority of the other measured fac-

tors [9]. However, we also found that coverage alone was not enough to ensure

fault detection.

Even though there are a number of studies that show a correlation between

code coverage and fault-finding effectiveness, there are also many studies which

do not. In previous work, we reported that satisfying code coverage alone was a

poor indication of test suite effectiveness when suites are generated specifically

to achieve coverage [10, 29]. We studied the fault-finding effectiveness of auto-

matically generated test suites that satisfied five code coverage criteria (branch,

decision, condition, MC/DC, and Observable MC/DC) and compared them to

randomly generated test suites of the same size for five different production

avionics systems. We found that, for most criteria, test suites automatically

generated to achieve coverage performed significantly worse than random test

suites of equal size which did not work to achieve high coverage. We did find

6



that coverage had some utility as a stopping criterion, however. Randomly-

generated test suites that used coverage as a stopping criterion outperformed

equally-sized suites generated purely randomly. The results of this study con-

firm that satisfying code coverage criteria has the potential to find faults, but

there are factors (i.e. program structure, types of faults, and choice of variables

monitored by the test oracle) that affect a test suite’s ability to find them even

when high code coverage is achieved.

Another group of studies have investigated an additional factor: the size

of the test suite, and how it interacts with both code coverage and suite effi-

cacy. Inozemtseva and Holmes [11] performed an empirical study investigating

the relationship between coverage and fault-finding capabilities and observed

the difference between the results when size was controlled and when it was

not controlled. They noticed that when size was not controlled for a test suite

there was a moderate to high correlation between coverage and fault-finding

effectiveness. However, when size was controlled they saw the correlation drop

significantly. They suggest that the effectiveness is not correlated with coverage,

but instead with the size of the test suite. A similar study by Namin and An-

dres [8] studied the relationship between size, code coverage, and fault-finding

effectiveness. They found that coverage is only sometimes correlated with ef-

fectiveness when the size of the test suite is controlled. They also noted that no

linear relationship existed between the three variables. This directly contradicts

the findings of Frate et. al [26] mentioned previously that found a higher cor-

relation between test suite effectiveness and block coverage than between test

suite effectiveness and test suite size.

These opposing results make this an interesting problem to solve. They in-

dicate there are factors that are not yet discovered which prevent test suites

from finding faults even when high code coverage is achieved. Unfortunately,

very little work has been done to understand why these studies report such

different findings. We [12, 4] previously investigated the effect program struc-

ture had on the ability of test suites satisfying the MC/DC coverage criterion

to find faults. Specifically, we compared the difference in test obligations and

7



the resulting test suites when implementation is varied between a small num-

ber of complex, inlined expressions and a larger number of simple expressions.

We found that the MC/DC criterion is highly sensitive to the different imple-

mentations, and reported that MC/DC satisfaction requires significantly more

test cases—and generally, more complex test cases—on inlined implementations

than it did on the non-inlined version of the same implementation. The use

of an inlined implementation produces robust test suites that are significantly

more adept at detecting faults. More recently, Zhang and Mesbah investigated

the influence test assertions have on code coverage and test suite effectiveness

[13]. They suggested assertions are the underlying reason behind the strong

correlation between test suite size, code coverage, and test suite effectiveness.

The results of their study provide empirical evidence that assertion quantity and

assertion coverage are strongly correlated with a test suite’s effectiveness and

the correlation between statement coverage and test suite effectiveness decreases

dramatically when assertion coverage is controlled.

These studies identify two specific factors apart from code coverage that in-

fluence test suite effectiveness and provide empirical evidence that code coverage

alone is not always a good indicator of test suite effectiveness. Additional fac-

tors which affect the effectiveness and/or additional test suite evaluation metrics

should be proposed and studied. Perez et. al [30] proposed a test evaluation

metric which incorporates not only if a component is covered by a test suite,

but also how it is covered.

Our paper advances this area of research by investigating the impact fault

type has on the relationship between code coverage and test suite effectiveness.

Our study reveals specific fault types that frequently go undetected even though

a test suite achieves high code coverage. Based on the nature of these faults we

suggest an area of future research that could improve a test suite’s ability to

find these types of faults and increase the overall effectiveness of a test suite.

8



3. Study

In the preceding sections, the variability in studies investigating the fault-

finding effectiveness of test suites meeting high levels of code coverage was dis-

cussed. In this work we conduct an empirical study to investigate whether

fault type could be a contributing factor to the variability shown in the studies.

Specifically, we answer the following research questions:

1. Are there particular fault types that go undetected more frequently by

developer-written test suites achieving high code coverage?

2. Are there particular fault types that are detected with disproportionate

frequency by developer-written test suites achieving high code coverage?

To answer these questions, we have performed the following steps:

1. Selected programs with large code bases and developer-written test suites

achieving at least 80% code coverage (Section 3.1).

2. Generated mutants—synthetic faults—for all classes within each program

(Section 3.2).

3. Executed the developer-written test suite against each mutant (Section 3.3).

4. Collected data on fault detection (Section 3.4).

In the following sections, we explain the procedures we followed for our experi-

ment.

3.1. Selection of Object Programs

To begin the experiment, we needed to select our object programs. We

selected these programs based on the following specific criteria:

1. A developer-written test suite must exist for the program.

2. This test suite must achieve at least 80% statement coverage over the

program code.

3. The program must have at least 10,000 lines of code.

9



Table 1: Experiment Objects and Associated Data

Commons Compress Joda Time Commons Lang Commons Math JSQL Parser

Thousand Lines of Code (KLOC) 11 14 13 49 10

Number of Test Cases 556 2157 3526 6248 315

Statement Coverage (%) 83 89 93 89 82

Branch Coverage (%) 81 81 90 85 76

Number of Mutation Faults 24,194 43,660 14,917 42,936 3,510

Commons CLI JSoup Commons CSV Commons Codec Closure

Thousand Lines of Code (KLOC) 7 19 6 20 356

Number of Test Cases 408 648 303 887 13,341

Statement Coverage (%) 96 81 94 93 87

Branch Coverage (%) 94 77 89 90 80

Number of Mutation Faults 1,462 3,738 1,083 4,354 12,202

Table 1 lists the objects of analysis along with the following information for

each program: the number of thousands of lines of code (KLOC), the number

of test cases, line coverage percentage, branch coverage percentage, and number

of mutation faults. Number of lines of code are counted without including

commented and whitespace lines. We ran both Cobertura 1 and ECLEmma 2

coverage tools to obtain coverage information. For each of the programs, these

tools reported within less than a percent of each other. The numbers reported

in Table 1 are therefore an average of those numbers rounded to the nearest

percent.

The programs we chose all have existing JUnit test suites. The JUnit test

suites are developer-written (as opposed to test suits that are generated by auto-

mated test generation tools), which reflects common practice in industry. This

also means the tests are most closely tailored for each specific program. We

are focused on developer-written suites, as automatically-generated suites typ-

ically are very different than developer-written suites [31, 32]. Automatically-

generated suites often use shorter sequences of test steps [10], choose inputs

that do not resemble those chosen by humans [31], follow sequences of events

that differ from those chosen by humans [33], and may be verified with gen-

1cobertura.github.io/cobertura
2www.eclemma.org

10



erated test oracles that differ from those created by humans [33]. Therefore,

focusing on automatically-generated test suites or mixing test creation methods

would introduce a risk of conflated results. Instead, we focus in this study on

developer-written tests and the typical strengths and weaknesses of such suites.

We wanted programs with existing test suites that satisfy high code coverage

percentages. We required programs with high code coverage because many stud-

ies that found correlation between code coverage and fault-finding capabilities,

only found that correlation when code coverage was high (e.g. [34, 24, 35, 36]).

By choosing programs with high code coverage there is a better chance of finding

the faults (as indicated by studies revealing there to be a correlation between

high code coverage and fault detection). We wanted to have the highest chance

of finding the fault so we could identify faults that were still going undetected.

Faults going undetected in this situation could explain some variance in the find-

ings of studies investigating this relationship. Based on the results of studies

which found a correlation between coverage and fault detection at high coverage

rates (e.g. [34, 35]), we chose 80% as the minimum target 3.

In order to provide an ample opportunity for a large number of faults to be

inserted, all of our programs have over 6,000 non-commented, non-whitespace

lines of code. This was necessary to collect enough fault data for statistical

analysis. We chose ten medium-sized Java programs that met the criteria we

were searching for. The programs range from 6,000 to 356,000 lines of code.

Joda Time 4 is an opensource replacement for the date and time classes in

Java versions previous to Java 8. The Apache Commons Math library 5 is an

opensource Mathematics library containing Math and Statistics components.

3JSQL Parser and JSoup had statement coverage above 80%, but the branch coverage for

these programs fell just below. Because the statement coverage met the threshhold and the

branch coverage was very close, we decided to include these two programs as well. All other

programs met or exceeded 80% for both statement and branch coverage.
4http://joda-time.sourceforge.net/
5http://commons.apache.org/proper/commons-math/

11



The Apache Commons Compress package 6 is an opensource API that provides

Java with the ability to work with file compression. The Apache Commons Lang

API 7 is an opensource library that provides helper utilities for the java.lang

API. JSQLParser 8 is an opensource API that parses SQL statements into a

hierarchy of Java classes. The Apache Commons CLI API9 provides support

for parsing command-line options passed to programs. The Jsoup HTML Parser

allows Java programs to work with real-world HTML10. The Apache Commons

CSV API reads and writes files in variations of the comma-separated value

(CSV) format11. The Apache Commons Codec API provides implementations of

common encoders and decoders12. Finally, the Closure Compiler is a JavaScript

checker and optimizer, written in Java13.

3.2. Mutant Creation

To investigate whether certain types of faults consistently go undetected

when tested with test suites satisfying high code coverage criteria, we needed to

have programs with faults. More specifically, we needed to know the location

and nature of each fault in order to determine whether the test suite was able

to catch it, and which types of faults were getting caught less frequently than

others.

Mutation testing is used in software testing to take the original program and

modify it in small ways. This can be helpful for many different reasons. One

main use of mutation testing is to evaluate the quality of software tests. First,

small variations of the original program are created by inserting a known fault

into the program. Then, the test suite will be run on the variation to see if it is

able to catch that fault. This process provides an indicator of how effective the

6http://commons.apache.org/proper/commons-compress/
7http://commons.apache.org/proper/commons-lang/
8http://jsqlparser.sourceforge.net/
9https://commons.apache.org/proper/commons-cli/

10https://jsoup.org/
11https://commons.apache.org/proper/commons-csv/
12https://commons.apache.org/proper/commons-codec/
13https://github.com/google/closure-compiler

12



test suite is at finding faults.

Mutation testing works by using mutation operators to create the small

variations of the programs. Each mutation operator provides the mechanism

to insert one specific type of fault. For example, the JSD (Static Modifier

Deletion) operator changes class variables to instance variables by removing the

static modifier. An example mutant is shown below.

Original: Mutated:

public static int x = 100; public int x = 100;

The previous example was just one example of a simple mutation operator.

Many mutation operators have been proposed and studied in the literature (e.g.

[37, 38]). Mutation operators are built with the goal of emulating common

programming mistakes. Each small variation of the program created through

the use of mutation operators are called mutants. Mutants can be created by

making a single change to the program, or by making more than one change

to the program. When mutants are created with multiple changes, the faults

may interfere with each other and cause different results than if each fault was

inserted individually in a mutant. For example, a test case which would fail

with the insertion of one fault, may no longer fail when another fault is added.

Similarly, a test case may not fail with a single fault, but fail with additional

faults. This problem of fault interference and interaction has been studied and

discussed in recent studies [39, 40]. To eliminate the threat of fault interference

and to get accurate results according to each individual fault type, we created

each mutant with a single fault.

In our experiment, we used mutation testing because of its ability to provide

programs with a large number of known, categorized faults. Our experiment is

concerned with the frequency at which faults are found, as well as the nature

of these faults. Therefore, we used mutation testing software to create mutants

with known fault location and type. Then, we could run the test suites over the

13



mutated programs and determine which ones were caught by the test suite and

which ones were not. In recent research, there has been some concern whether

conclusions drawn from studies using faults created through mutation operators

can be generalized for real faults. In our study the concern would be whether

the ability to find the seeded faults would be representative of a test suite’s

ability to find real faults. There is research to support that mutant detection

is strongly correlated with real fault detection [41, 42]. Further, our study isn’t

focused solely on the exact mutant operator being missed, but instead on the

nature of that type of fault. We are using the results of the study to be able to

expand the knowledge base and answer questions such as: What problems do

faults being missed cause? How can test suites be improved to find faults which

cause that type of problem?

Our study uses Java programs, so we needed a mutation tool to be able to

create mutants for Java programs. There are a few tools available to do this.

The most popular mutation tools for Java include Pit 14, Major [43], and Mu-

Java [44]. Of the three, MuJava provided the most complete set of mutation

operators, providing both traditional and class-level mutation operators. There-

fore, we used MuJava to generate the mutants in this study. MuJava provides

19 traditional mutation operators and 28 class-level mutation operators [45].

There were two class-level mutation operators (EOA and IHD) that MuJava

was unable to generate in any of our programs selected for this study, therefore

we only used the remaining 26 class-level mutation operators in this study. The

number of mutants created for each program is included in the last row in Ta-

ble 1. A description of the traditional operators is provided in Table 2 and a

description of the class-level mutation operators is provided in Table 3.

There are some mutant operators that would appear to be very specific

to Java programs, or at least to object-oriented languages. For example, the

IOD (Overriding Method Deletion) operator deletes an entire declaration of

an overriding method in a subclass, so that it will use the parent’s version of

14http://pitest.org/

14



Table 2: Traditional Mutation Operators and Descriptions

Mutation Operators Description
AORB (Arithmetic Operator Replacement) Replace basic binary arithmetic operators with other bi-

nary arithmetic operators.
AORS (Arithmetic Operator Replacement) Replace short-cut arithmetic operators with other unary

arithmetic operators.
AOIU (Arithmetic Operator Insertion) Insert basic unary arithmetic operators.
AOIS (Arithmetic Operator Insertion) Insert short-cut arithmetic operators.
AODU (Arithmetic Operator Deletion) Delete basic unary arithmetic operators.
AODS (Arithmetic Operator Deletion) Delete short-cut arithmetic operators.
ROR (Relational Operator Replacement) Replace relational operators with other relational opera-

tors, and replace the entire predicate with true and false.
COR (Conditional Operator Replacement) Replace binary conditional operators with other binary

conditional operators.
COD (Conditional Operator Deletion) Delete unary conditional operators.
COI (Conditional Operator Insertion) Insert unary conditional operators.
SOR (Shift Operator Replacement) Replace shift operators with other shift operators.
LOR (Logical Operator Replacement) Replace binary logical operators with other binary logical

operators.
LOI (Logical Operator Insertion) Insert unary logical operator.
LOD (Logical Operator Delete) Delete unary logical operator.
ASRS (Short-Cut Assignment Operator Replacement) Replace short-cut assignment operators with other short-

cut operators of the same kind.
SDL (Statement Deletion) SDL deletes each executable statement by commenting

them out. It does not delete declarations.
VDL (Variable Deletion) All occurrences of variable references are deleted from ev-

ery expression. When needed to preserve compilation,
operators are also deleted.

CDL (Constant Deletion) All occurrences of constant references are deleted from
every expression. When needed to preserve compilation,
operators are also deleted.

ODL (Operator Deletion) Each arithmetic, relational, logical, bitwise, and shift op-
erator is deleted from expressions and assignment opera-
tors. When removed from assignment operators, a plain
assignment is left.

the method. However, there is still useful information that can be gained by

understanding a test suite’s ability to catch this type of error. This type of

error would be similar to just calling the wrong method. It would be considered

a control flow error, as it is executing the wrong area of code. This type of

problem can be caused in languages that are not object-oriented as well. For

example, in functional languages it is quite common to put a function call as

a parameter in another function call (and possibly nested a few times). The

function calls could be accidentally transposed, calling the wrong method. This

problem would be similar to the type of problem caused by the IOD operator.

This example illustrates how—even though our experiment uses Java programs

and mutant operators built for Java—the knowledge gained from our study

could be useful in other circumstances as well.

3.3. Execute Test Suites Over Mutants

After the programs were chosen and mutants were created for them, we

executed the entire test suite for each program against every mutant. Although

15



Table 3: Class Level Mutation Operators and Descriptions

Mutation Operators Description
IHD (Hiding Variable Deletion) The IHD operator will delete a variable in a subclass that

has the same name and type as a variable in the parent
class.

IHI (Hiding Variable Insertion) The IHI operator inserts a variable of the same name as a
variable in the parent scope, so as to ”hide” the variable
in the parent scope.

IOD (Overriding Method Deletion) The IOD operator deletes an entire declaration of an over-
riding method in a subclass so it will use the parent’s
version.

IOP (Overriding method calling position change) When a child class makes a call to a method it overrides
in the parent class, the IOP operator will move that call
to a different location in the method.

IOR (Overridden method rename) The IOR operator renames the parent’s version of an over-
ridden method.

ISI (super Keyword Insertion) The ISI operator inserts the super keyword so that a ref-
erence to a variable or method in a child class uses the
parent variable or method.

ISD (super Keyword Deletion) The ISD operator deletes occurrences of the super key-
word so that a reference to a variable or method is no
longer to the parent class’ variable or method.

IPC (Explicit Call of a Parent’s Constructor Deletion) The IPC operator deletes super constructor calls, caus-
ing the possibility for a child object to not be initialized
correctly.

PNC (New Method Call with Child Class Type) The PNC operator causes an object reference to refer to
an object of a different compatible type.

PMD (Member Variable Declaration with Parent Class Type) The PMD operator changes the declared type of an object
reference to the parent of the original declared type.

PPD (Parameter Variable Declaration with Child Class Type) The PPD operator is the same as the PMD, except that
it operates on parameters rather than instance and local
variables.

PCI (Type Cast Operator Insertion) The PCI operator changes the actual type of an object
reference to the parent or child of the original declared
type.

PCC (Cast Type Change) The PCC operator changes the type that a variable is cast
into.

PCD (Type Cast Operator Deletion) The PCD operator deletes a type casting operator.
PRV (Reference Assignment with Other Compatible Types) The PRV operator changes operands of a reference assign-

ment to be assigned to objects of subclasses.
OMR (Overloading Method Contents Change) The OMR operator replaces the body of a method with

the body of another method that has the same name.
OMD (Overloading Method Deletion) The OMD operator deletes overloading method declara-

tions.
JTI (this Keyword Insertion) The JTI operator inserts the keyword this.
JTD (this Keyword Deletion) The JTD operator deletes uses of the keyword this.
JSI (static Modifier Insertion) The JSI operator adds the static modifier to change in-

stance variables to class variables.
JSD (static Modifier Deletion) The JSD operator removes the static modifier to change

class variables to instance variables.
JID (Member Variable Initialization Deletion) The JID operator removes the initialization of member

variables in the variable declaration.
JDC (Java-supported Default Constructor Deletion) The JDC operator forces Java to create a default con-

structor by deleting the implemented default constructor.
EOA (Reference Assignment and Content Assignment Replacement) The EOA operator replaces an assignment of an object

reference with a copy of the object, using the Java clone()
method.

EOC (Reference Comparison and Content Comparison Replacement) The EOC operator changes an object reference check to
object content comparison check through the use of Java’s
equal() method.

EAM (Accessor Method Change) The EAM operator changes an accessor method name for
other compatible accessor method names (where compat-
ible means they have the same signature).

EMM (Modifier Method Change) The EMM does the same as EAM except it works with
modifier methods instead of accessor methods.

OAN (Argument Number Change) The OAN operator changes the number of arguments in
the method invocations, but only if there is an overloading
method that can accept the new argument list.

16



recent studies [11, 8, 10] have reported size to be a factor in the effectiveness

of test suites at finding faults, we did not try to limit the size of the test suite.

We ran all tests across all mutants. If the test case found the seeded fault in

the mutant, it is said to have killed the mutant. By running all tests (instead

of a subset of tests that met the same coverage percentage), the chances of

killing the mutant were higher. The goal of our study was to gain knowledge

about particular fault types that go undetected most frequently. By revealing

the faults that went undetected when all tests were executed, we successfully

identify the most troublesome fault types.

3.4. Collect and Analyze Data

Finally, after running the test suites across all mutants, we completed the

data collection. To be able to answer our research question, we needed to collect

the following data: the number of mutants created for each mutant operator

and the number of these mutants killed by the test suite. Because of the large

number of mutants investigated in this study, in order to collect this data, we

wrote some custom scripts to inspect the log files generated from running the

JUnit test suites. Using these scripts we were able to determine, for every

mutant, whether the bug was found (aka mutant killed) or not found. Then we

could use this information and quickly tally totals for each mutation operator

for each program.

3.5. Threats to Validity

This section discusses the construct, internal, and external threats to the

validity of our study.

3.5.1. Construct Validity:

In our study, we measure fault-finding capabilities over seeded faults, rather

than real faults. It is possible real faults could produce different results, even

though recent studies [41, 42] show that the detection of mutation faults is

strongly correlated with the detection of real faults. Motivationally, however,

17



we believe there is benefit in using mutations even if mutations do not perfectly

map to real faults. Test suites that are effective at detecting a wide range of

mutation types may be likely to be better at detecting real faults as well, simply

because more effort went into creating a robuse set of test cases. Guarding

against mutations is guarding against additional potential shortcomings. If we

can understand where developer-written suites tend to fall short, we can advise

programmers on their practices and the creators of automated generation tools

on where they can improve their work.

Further, the faults used in this study were limited to what MuJava was able

to generate. Not all programs have mutants for every available mutant operator,

and some mutant operators (EOA and IHD) were not generated for any of the

studied programs. These operators were excluded from our results.

Mutation testing may produce equivalent mutants—mutants that always

return the correct result, and are indistinguishable from normal programs. It is

possible that some of the undetected faults are equivalent mutants, and detecting

equivalency is often an undecidable problem. Therefore, we cannot state with

certainty which of the undetected mutants were equivalent. However, in the

majority of cases, the mutation types that were detected less often were not

types that seem to be prone to producing equivalent mutants.

There is also the risk that the mutants generated could have been generated

in the areas of code that are not covered by any tests in the test suite. These

mutants would be recorded as not being killed, but potentially could have been

killed if they had been in an area covered by the test suite. Although this has the

potential to skew the results, we believe it is unlikely because we have chosen

such a high coverage level and have encluded enough mutants from enough

different classes to overcome any potential clustering of mutants in uncovered

code.

3.5.2. Internal Validity:

The accuracy of the results of our study are dependent upon the accuracy of

the tools used. We used tools to seed faults and measure coverage percentages.

18



We did use multiple tools to measure coverage and found the results to be very

similar (varying less than one percent) so we are confident these results are

accurate. Also, when tallying the total results, we wrote scripts to sift through

the log files of each mutant in order to determine whether the fault was found

or not. Although we did manually verify many of the logs for each program,

there is still a possibility for a very small margin of error. Still, sifting manually

through over 163,919 log files would have likely created a much larger margin

of error as that would introduce more human error.

3.5.3. External Validity:

There are three main threats to external validity in our study. First, the

programs we considered were all Java programs. Our results may not extend to

programs written in other languages. Even though we explained in Section 3.2

that information may be gained from mutant operators built for Java in other

programs as well, we do not have empirical evidence to quantify the extent to

which this is true. Second, although the programs we chose were considerably

larger than many of the previous studies mentioned in the Section 2, they are

not large compared to industry systems. Our results may not generalize to

these size systems. Last, the mutants created in our study were created by

inserting a single fault into each mutant. We did this to eliminate the problem

of fault interference that can occur with multiple faults [39, 40]. Because of

fault interaction and interference, the results could be much different if multiple

faults were inserted into each mutant.

4. Data and Analysis

In this section we present the results of our experiment. First, we will discuss

the results for the traditional mutant operators, then we will discuss the results

for the class-level mutant operators. Finally, we present the overall results and

analyze our statistical findings.

19



Table 4: Traditional Mutant Results by Program

Commons Compress Joda Time Commons Lang Commons Math JSQL Parser
Mutant Total Percent Total Percent Total Percent Total Percent Total Percent
Operators Mutants Found Mutants Found Mutants Found Mutants Found Mutants Found
AORB 487 54.21% 1183 41.67% 789 80.99% 7621 88.05% 25 68.00%
AORS 22 40.91% 134 8.21% 35 82.86% 347 16.43% 2 50.00%
AOIU 477 36.90% 1565 45.69% 619 77.54% 4094 69.32% 24 70.83%
AOIS 2370 34.51% 7852 22.82% 1865 66.49% 7626 72.21% 169 66.86%
AODU 8 37.50% 2241 2.05% 32 81.25% 382 64.14% 0 -
AODS 6 100.00% 1 100% 5 100.00% 68 41.18% 0 -
ROR 1830 43.50% 5333 27.68% 3479 73.93% 6269 71.93% 290 76.21%
COR 170 41.76% 231 60.17% 396 68.94% 382 85.34% 27 85.19%
COD 30 43.33% 18 77.78% 40 87.50% 163 66.87% 15 93.33%
COI 511 68.49% 1807 33.76% 942 93.31% 1492 70.84% 263 94.30%
SOR 26 100.00% 6 100.00% 0 - 64 18.75% 0 -
LOR 99 57.58% 24 25.00% 9 88.89% 267 31.84% 0 -
LOI 890 43.03% 2749 37.94% 1104 84.33% 3215 33.65% 48 75.00%
LOD 3 100.00% 4 0.00% 0 - 2 0.00% 0 -
ASRS 255 64.31% 144 18.75% 337 70.33% 784 84.44% 4 0.00%
SDL 1808 46.52% 6841 21.41% 2447 81.94% 4418 75.46% 1127 78.26%
VDL 262 45.04% 570 29.65% 256 74.22% 2880 82.92% 74 91.89%
CDL 219 31.96% 557 15.26% 161 62.11% 770 77.27% 104 87.50%
ODL 1036 35.91% 3993 13.00% 1161 68.99% 4803 88.24% 398 86.93%
Total 10509 43.20% 35253 24.44% 13677 76.41% 45647 74.01% 2570 80.82%

Commons CLI JSoup Commons CSV Commons Codec Closure
Mutant Total Percent Total Percent Total Percent Total Percent Total Percent
Operators Mutants Found Mutants Found Mutants Found Mutants Found Mutants Found
AORB 26 65.38% 109 99.08% 30 73.33% 198 87.88% 118 33.90%
AORS 1 100.00% 22 95.45% 6 83.33% 5 80.00% 13 46.15%
AOIU 38 73.68% 201 98.01% 62 88.71% 183 72.13% 139 43.88%
AOIS 92 68.48% 772 97.02% 154 91.56% 501 83.43% 499 26.85%
AODU 0 - 4 100.00% 0 - 0 - 7 0.00%
AODS 0 - 3 100.00% 0 - 5 100.00% 4 50%
ROR 278 71.58% 855 98.71% 142 80.99% 1071 79.55% 896 38.17%
COR 56 58.93% 134 94.78% 43 81.40% 135 82.22% 384 62.50%
COD 8 75.00% 22 100.00% 7 100% 24 87.5% 57 77.19%
COI 128 86.72% 199 100.00% 81 93.83% 299 92.64% 546 74.36%
SOR 0 - 0 - 0 - 4 100.00% 0 -
LOR 0 - 0 - 0 - 24 91.67% 14 64.29%
LOI 49 71.43% 295 98.31% 103 91.26% 311 78.78% 188 44.15%
LOD 0 - 0 - 0 - 0 - 0 -
ASRS 0 - 22 100.00% 4 0.00% 29 72.41% 9 11.11%
SDL 368 73.37% 554 95.49% 231 89.18% 898 76.39% 1645 58.78%
VDL 20 45.00% 47 100.00% 21 61.90% 82 71.95% 71 43.66%
CDL 31 19.35% 20 100.00% 18 38.89% 68 63.24% 74 35.14%
ODL 127 43.31% 268 97.76% 101 65.35% 375 70.67% 701 49.93%
Total 1222 68.17% 3527 97.65% 1003 83.95% 4212 79.27% 5365 51.11%

4.1. Traditional Mutants

MuJava provides 19 traditional mutant operators. A list of the 19 operators

and a description of each is provided in Table 2. A total of 122,985 traditional

mutants were created across the ten object programs. Table 4 provides a break-

down of the number of each individual traditional mutant that were created for

each object program, as well as the percentage of those mutants that were killed

by the test suite for that program.

The results show there is a wide variance in the kill rate between each mutant

type for the traditional operators. Figure 1 provides a bar chart of the overall kill

percentages (using the totals for all ten programs) for each traditional operator.

There are two mutant operators with a kill rate of less than 25%: AODU (12%)

and AORS (25%).

20



Figure 1: Traditional Mutants Kill Rates

4.2. Class-level Mutants

There are 26 class-level mutant operators that we considered in our experi-

ment. A list of the operators and descriptions is provided in Table 3. A total of

40,934 class-level mutants were created across the ten object programs. Table

5 provides the number of mutants created for each operator for each program

and the percentage of the mutants killed by the test suite for the program.

Like the traditional mutants, the kill rate for the class-level mutants vary

greatly by mutant type. To quickly see which mutant types had the lowest kill

rate overall, a bar graph is provided in Figure 2. The bar graph shows seven

mutant operators with a kill rate of less than 20%: ISI (15%), JSD (10.09 %),

PPD (0 %), IOR (6.63%), PMD (0 %), JID (17.41 %), and PNC (13.16 %).

4.3. Overall results

The bar graphs and tables provided in the previous sections show that there

are some types of mutants found less frequently than others. The goal of this

section is to see whether we can say statistically that these mutants are found

21



Table 5: Class Level Mutant Results by Program

Commons Compress Joda Time Commons Lang Commons Math JSQL Parser
Mutant Total Percent Total Percent Total Percent Total Percent Total Percent
Operators Mutants Found Mutants Found Mutants Found Mutants Found Mutants Found
EOC 3 0.00% 2 100% 6 33.33% 0 - 0 -
EMM 541 53.05% 28 85.71% 130 69.23% 65 27.69% 9 66.67%
OAN 5452 34.83% 3410 98.33% 146 89.73% 627 55.18% 2 0.00%
JDC 2 50.00% 1 100.00% 1 100.00% 5 80.00% 0 -
JSI 275 26.55% 17 29.41% 40 57.50% 217 19.35% 236 54.66%
ISI 20 0.00% 16 31.25% 0 - 24 16.67% 0 -
PCI 2635 0.00% 1363 47.25% 11 100.00% 317 64.35% 31 96.77%
PCC 11 0.00% 11 0.00% 0 - 13 92.31% 0 -
PCD 9 0.00% 8 37.50% 5 100.00% 9 88.89% 0 -
ISD 8 0.00% 8 12.50% 12 66.67% 11 63.64% 0 -
JSD 135 0.00% 43 20.93% 93 0.00% 259 9.65% 1 0.00%
EAM 702 25.07% 233 79.40% 260 84.62% 5524 33.76% 116 58.62%
PPD 0 - 0 - 0 - 4 0.00% 2 0.00%
IOR 84 0.00% 56 8.93% 0 - 24 25.00% 0 -
IOP 1 100.00% 0 - 0 - 8 50.00% 2 0.00%
PMD 19 0.00% 18 0.00% 2 0.00% 22 0.00% 0 -
PRV 409 14.18% 294 97.62% 80 97.50% 237 75.11% 55 85.45%
IOD 292 8.90% 196 39.80% 50 76.00% 225 17.78% 77 93.51%
JID 74 9.46% 8 87.50% 14 64.29% 23 8.7% 59 15.25%
JTI 104 48.08% 0 - 32 90.62% 128 26.56% 182 79.67%
JTD 53 67.92% 0 - 0 - 17 52.94% 161 83.85%
IPC 36 16.67% 10 30.00% 23 91.30% 78 62.82% 2 0.00%
OMD 28 3.57% 23 4.35% 13 84.62% 13 30.77% 1 0.00%
OMR 2775 3.24% 2662 98.08% 320 75.94% 1160 89.22% 4 0.00%
IHI 12 91.67% 0 - 0 - 80 82.50% 0 -
PNC 5 0.00% 0 - 2 100.00% 64 7.81% 0 -
Total 13685 19.89% 8407 85.93% 1240 74.35% 9154 43.34% 940 68.19%

Commons CLI JSoup Commons CSV Commons Codec Closure
Mutant Total Percent Total Percent Total Percent Total Percent Total Percent
Operators Mutants Found Mutants Found Mutants Found Mutants Found Mutants Found
EOC 0 - 1 0.00% 0 - 0 - 2 0.00%
EMM 8 75.00% 0 - 0 - 0 - 4929 34.79%
OAN 2 100.00% 11 63.64% 0 - 34 17.65% 10 60.00%
JDC 0 - 0 - 0 - 0 - 0 -
JSI 30 50.00% 20 40.00% 9 77.78% 15 40.00% 124 49.19%
ISI 0 - 14 0.00% 0 - 1 100.00% 1 100.00%
PCI 0 - 2 0.00% 0 - 0 - 307 68.40%
PCC 0 - 0 - 0 - 0 - 0 -
PCD 0 - 0 - 0 - 0 - 0 -
ISD 0 - 3 0.00% 1 100.00% 0 - 0 -
JSD 10 0.00% 3 0.00% 9 22.22% 35 0.00% 76 40.79%
EAM 96 42.71% 43 55.81% 38 65.79% 8 0.00% 997 48.04%
PPD 0 - 0 - 0 - 0 - 0 -
IOR 0 - 0 - 0 - 0 - 2 0.00%
IOP 0 - 3 0.00% 2 0.00% 0 - 3 0.00%
PMD 0 - 0 - 0 - 0 - 0 -
PRV 47 85.11% 7 57.14% 7 100.00% 0 - 135 82.96%
IOD 4 25.00% 30 26.67% 5 40.00% 12 33.33% 78 39.74%
JID 5 20.00% 2 0.00% 3 100.00% 4 25.00% 55 7.27%
JTI 21 47.62% 21 57.14% 5 0.00% 13 0.00% 58 46.55%
JTD 0 - 14 71.43% 0 - 1 0.00% 38 71.05%
IPC 1 100.00% 8 0.00% 0 - 6 0.00% 11 0.00%
OMD 0 - 0 - 0 - 0 - 0 -
OMR 16 31.25% 20 90.00% 1 0.00% 11 18.18% 10 30.00%
IHI 0 - 4 75.00% 0 - 0 - 1 100.00%
PNC 0 - 5 60.00% 0 - 0 - 0 -
Total 240 50.83% 211 45.97% 80 58.75% 140 14.29% 6837 39.61%

less often than other mutants. The percentages displayed in the bar graph can

be deceiving because there are mutants on there with very high kill rates, but

a low number of mutants created. We needed a way to determine if that high

(or low) kill rate is really unusual, or just distorted because of the number of

mutants created.

In statistics, “unusual” data points are called outliers—data points that are

significantly different from other data points in the set. To determine the outliers

in our data—the mutants with a significantly different kill rate than others—we

22



Figure 2: Class-Level Mutants Kill Rates

first completed a regression analysis, and then calculated studentized residuals.

Regression analysis can be used in statistics to estimate relationships among

variables. In general, regression methods attempt to fit a model to observed

data in order to quantify the relationship between two groups of variables. The

fitted model can then be used to describe the relationship or predict new values.

In our experiment, the data is the number of mutants created and the number of

mutants killed. The regression analysis on our data provides, based on the data

gathered, what the predicted—or expected—value would be for any number of

mutants created for any mutant type. Figure 3 provides a scatterplot of our

data. The line shows where the expected values would be. Specifically, it shows

how many mutants would be expected to be killed (y-axis) according to the

number of mutants that were created (x-axis).

The model created by regression analysis assumes that all mutant types

are all killed at the same rate. However, we are trying to determine whether

there are particular mutant types that are not killed at the same rate as others.

To answer this question, we would need to determine which mutant types do

not fit the regression model shown in Figure 3. The figure shows that many

23



Figure 3: Scatter Plot of Mutant Types and Killed Mutants

of the mutant operators do follow that linear behavior. However, there are a

few exceptions. AODU, PCI, EMM, EAM, LOI, and AOIS fall below the line,

while AORB and ROR are above the line. The line shows how many mutants

are expected to be killed according to the number of mutants created if the

data set was linear (meaning all fault types are found at the same rate). When

the results for a particular mutant type do not fall on the line (meaning it

did not kill the number of mutants expected, according to the linear regression

model), it indicates that particular mutant type could be an outlier. However,

we cannot make any solid conclusions based on the visual appearance of the

points plotted in Figure 3. Therefore, we calculate the residuals for each mutant

type. Residuals are found by determining the difference between the observed

value and the expected value (as shown in Equation 1).

Residual = ObservedV alue− PredictedV alue (1)

One problem with residuals is the magnitude of the residual depends on the

unit of measurement. This can make it difficult to determine unusual values.

This problem can be eliminated by dividing the residual by an estimate of their

24



standard deviation, known as studentized residuals. Studentized residuals help

identify outliers which are not consistent with the rest of the data. Data points

that have a studentized residual with an absolute value of two or greater are

considered statistically significant at the 95% a- level. A plot of the studentized

residual values for each mutant operator is shown in Figure 4. Mutant operators

with values of zero or near zero mean the results for this mutant operator are

either the value that was expected according to the regression analysis (for

values of zero) or close to expected (for values near zero). Results that are

further from zero indicate that the rate of detection was different than what

was expected.

Figure 4: Studentized Residual with AORB

Table 6 provides the exact calculated studentized residual values for each

mutant operator. The table includes five columns: the mutation operator, the

total number of mutants created for that operator, the mutant’s kill rate, the

studentized residual using all mutants, and the studentized residual excluding

AORB. The studentized residual for all mutants identified AORB as an extreme

outlier, having a value of 5.53 (well above the absolute value of 2 which qualifies

25



Table 6: Mutant Operator Totals and Studentized Residuals

Mutant Operator Total Created Percent Killed Studentized Residual Studentized Residual
(AORB Included) (AORB Excluded)

AORB 10586 80.14% 5.53 -
AORS 587 24.53% -0.21 -0.23
AOIU 7402 63.48% 1 1.55
AOIS 21900 50.11% -2.21 -2.14
AODU 2674 12.12% -1.82 -2.31
AODS 92 54.35% 0.07 0.13
ROR 20443 58.34% 1.05 2.11
COR 1958 70.38% 0.53 0.77
COD 384 74.22% 0.19 0.28
COI 6268 67.21% 1.23 1.84
SOR 100 48.00% 0.06 0.11
LOR 437 42.79% -0.01 0.02
LOI 8952 47.16% -1.15 -1.22
LOD 9 33.33% 0.07 0.12
ASRS 1588 71.41% 0.47 0.68
SDL 20337 55.00% -0.16 0.44
VDL 4283 72.19% 1.2 1.74
CDL 2022 51.58% -0.06 0.01
ODL 12963 56.11% 0.17 0.61
EOC 14 28.57% 0.07 0.12
EMM 5710 37.58% -1.59 -1.91
OAN 9694 59.32% 0.64 1.14
JDC 9 77.78% 0.08 0.13
JSI 983 37.54% -0.21 -0.21
ISI 76 14.47% 0.02 0.06
PCI 4666 23.55% -2.43 -3.12
PCC 35 34.29% 0.06 0.11
PCD 31 51.61% 0.07 0.12
ISD 43 39.53% 0.06 0.11
JSD 664 10.09% -0.4 -0.48
EAM 8017 38.46% -2.22 -2.7
PPD 6 00.00% 0.07 0.12
IOR 166 06.63% -0.05 -0.04
IOP 19 26.32% 0.07 0.11
PMD 61 00.00% 0.02 0.06
PRV 1271 63.81% 0.24 0.37
IOD 969 30.96% -0.3 -0.34
JID 247 17.41% -0.07 -0.06
JTI 564 54.43% 0.06 0.13
JTD 284 76.41% 0.17 0.25
IPC 175 45.71% 0.05 0.09
OMD 78 21.79% 0.03 0.07
OMR 6979 57.42% 0.27 0.56
IHI 97 83.51% 0.12 0.18
PNC 76 13.16% 0.02 0.06

26



a value as an outlier with 95% confidence). A value with such an extreme

residual value can pull the expected values line towards that observed value in

such a way that other outliers could be missed. For this reason, we calculated

the studentized residual values for the data excluding AORB as well. The

studentized residual values excluding AORB are provided in the last column in

Table 6 and a plot is shown in Figure 5.

Figure 5: Studentized Residual without AORB

Examining the data with all mutant operators included reveals four outliers:

AORB (with a value of 5.53), AOIS (with a value of -2.21), PCI (with a value

of -2.43), and EAM (with a value of -2.22). A positive value indicates that the

mutant operator was found more often than expected, while a negative value

indicates the mutant type was killed less often than expected. Examining the

data excluding the extreme outlier, AORB, reveals five outliers: AOIS (with a

value of -2.14), AODU (with a value of -2.31), ROR (with a value of 2.11), PCI

(with a value of -3.12), and EAM (with a value of -2.7).

27



5. Discussion

The results in the previous section identified six mutant types as outliers.

Two of the mutant types are identified as outliers by having a kill rate higher

than expected and four mutants types had a kill rate lower than expected.

Since these are the unusual values that could be contributing the variance in

the effectiveness of test suites, we direct our attention to these mutant types.

Specifically, in this section, we provide a description of each mutant type of

interest, a sample mutant that could be created using that mutant operator,

and a discussion of the results for that mutant type.

5.1. Arithmetic Operator Replacement (Binary) (AORB)

The mutant with the most extreme results was AORB. It had a studen-

tized residual value of 5.53. There were 10,586 mutants created for AORB with

an overall kill rate of 80.14%. AORB is the Arithmetic Operator Replacement

(Binary) mutant. It will replace basic binary arithmetic operators with other bi-

nary arithmetic operators. An example mutant, where the subtraction operator

is replaced with the modulus operator, is provided below.

Original: AORB Mutant:

return i - 1; return i % 1;

This is a type of mutant operator where a high kill rate would be expected.

Performing a completely different arithmetic operation will typically produce

very different results, and should be caught by an effective test suite. Another

factor that could have contributed to the results being an extreme outlier is the

way MuJava seeds this particular type of fault. When MuJava sees the oppor-

tunity to insert this type of fault in the source code, it will create a mutation for

every arithmetic operation. For instance, in the example above, it would create

a mutant for i % 1 as shown, but also for i + 1, i * 1, and i / 1. This leads to

four mutants created for each opportunity found. Theoretically, if the test code

is able to kill one of these mutants, it should kill the other three as well.

28



5.2. Relational Operator Replacement (ROR)

ROR is the Relational Operator Replacement mutant. It will replace a rela-

tional operator with another relational operator. An example is provided below.

Original: OAN Mutant:

return x > 0; return x < 0;

This mutation operator makes a drastic change to the program, often pro-

ducing results exactly opposite of the intended action. It was not surprising that

it was found at a higher rate than other mutation operators. In fact, it may be

more surprising that it was just over the threshhold (at 2.11) to be considered

an outlier.

5.3. Type Cast Operator Insertion (PCI)

PCI is the type cast operator insertion mutant. The PCI operator changes

the actual type of an object reference to the parent or child of the original

declared type. An example is provided below.

Original: PCI Mutant:

Child cRef = new Child(); Child cRef = new Child();

Parent pRef = cRef; Parent pRef = cRef;

pRef.toString(); ((Child)pRef).toString();

There were 4,666 PCI mutants created with an overall kill rate of 23.6%. This

particular mutant could be hard to find because a child and parent class have

many similarities. Many of the methods behave exactly the same way, otherwise

there would be no point in creating a child class. The test suite would have to

determine which methods in the child class behave differently than the version

from the parent class, and then focus on those methods. This mutation operator

29



likely results in a larger number of equivalent mutants than some of the other

mutation operators, as it carries a high likelihood of producing a mutation with

the same result, regardless of input used. Identifying equivalency is not generally

a decidable problem, so we do not have the means currently of determining how

often this particular mutation produces equivalent results. In practice, however,

faults of this nature are possible and should be guarded against. Test oracles

should be able to distinguish between versions of the system where the right

method is called, and versions where the incorrect (parent) method is called.

5.4. Accessor Method Change (EAM)

This was one of the more surprising results. EAM is the Accessor Method

Change mutant. The EAM mutant changes a call to an accessor method with

the call to a different compatible accessor method. An example mutant is pro-

vided below.

Original: EAM Mutant:

point.getX(); point.getY();

It is surprising this mutant operator was found less often than expected be-

cause retrieving the wrong value would be something that could certainly throw

calculations and results off. This is an important finding because this could be

an easy mistake for a programmer to make with most modern IDE’s having some

form of autocomplete or IntelliSense. It would be easy to accidentally choose

the wrong method if all options are similarly-named. Test oracles could be made

to find more of these mutants by validating the values of class attributes more

frequently and more thoroughly.

5.5. Arithmetic Operator Insertion (Shortcut) (AOIS)

AOIS is another unexpected and interesting result. AOIS is the Arithmetic

Operator Insertion mutant operator. It will increase or decrease a variable using

the increment or decrement operator. An example is shown below.

30



Original: AOIS Mutant:

return i; return ++i;

Incrementing or decrementing a variable at places where it is not warranted

could produce incorrect results or have other unpredictable outcomes. For ex-

ample, if a mutant was created to increment a variable in the loop header, it

could cause the loop to not execute the correct number of times. A mutant

of this type going undetected could cause many unwanted behaviors. Better

testing of boundary values could improve detection of these kind of “off-by-one”

errors. This type of fault may also corrupt the internal state of the class, but

may be hard to detect through inspection of method output alone. Oracles that

more throughly inspect internal state may also help here.

5.6. Arithmetic Operator Deletion (Unary) (AODU)

Similar to the last two, AODU is also a surprising result. AODU is the

Arithmetic Operator Deletion. It deletes basic unary arithmetic operators (+,

-, ++, –, !). An example is shown below.

Original: AODU Mutant:

return -1; return 1;

Like AOIS, changing the value of a variable by changing the unary arithmetic

operator should cause incorrect results and unpredictable behavior. The fact

that test cases miss these type of errors suggests that the test oracles being used

to check results are not specific enough—that they are allowing slight variations

in the output, or ignoring whether a value is positive or negative.

5.7. General Trends

The last three mutants discussed presented three very surprising, and inter-

esting, results. Each of these mutation types change the internal state of the

31



program by using the wrong value in some way—one by retrieving the wrong

variable, one by incrementing or decrementing a value, and one by deleting a

unary arithmetic operator. Each of these types of mutants could be caught

more often by adding more validation to the values of variables in the program

at different times throughout the test methods. For instance, better testing of

boundary values could assist in situations where the result may be slightly off

of the correct value. Regardless of the level of code coverage, the test must have

an oracle sufficiently powerful to detect an exposed fault. Merely executing a

line of code does not ensure that a fault is triggered. At the same time, we must

design oracles that are thorough enough to detect a fault when it is triggered.

The role of the test oracle is often downplayed in testing research [46]. More

research is needed on this side of the equation—in deciding which variables to

monitor and evaluate using the oracle, and in the types of assertions to use to

maximize the likelihood of fault detection. The level of coverage and the thor-

oughness of the oracle have a dual influence on whether faults are detected, and

we must make improvements in both regards.

5.8. Impact of the Study

The results of our study advance the state-of-the art by revealing the nature

of faults that are getting missed most frequently (with statistical significance)

by human-written test suites achieving high code coverage. Specifically, as de-

scribed in the last section, three of the fault types missed at a statistically higher

rate have a common problem: the internal state of the program is corrupted, and

the results either do not change the output—or the oracle is not specific enough

to detect the change. Developing test suites and test oracles more capable of

finding these faults will improve the overall effectiveness of test suites.

Based on our results, we suggest that in order to strengthen test suites, test

creation methods should consider whether test oracles are validating internal

state along with meeting high code coverage. In order to find faults where the

program has an incorrect internal state, tests need to not only execute the buggy

code, but also have a test oracle sufficient to catch the buggy state.

32



Our recommendation is supported by the nature of the faults missed in our

study as well as recent research investigating the relationship between assertions

and test suite effectiveness [47, 13, 46]. Assertions are a type of a test oracle.

Zhang and Mesbah conducted an empirical study and found that the number

of assertions in a test suite strongly correlates with its effectiveness [13]. Chen

et.al investigated how assertions impacted coverage-based test suite reduction

techniques [47]. They found assertions are significantly correlated with the

effectiveness of test suites used by coverage-based test suite reduction. In our

past work, we found that the selection of program variables to monitor and

check with the oracle has a major impact on fault detection [46]. We found

that inspection of internal state has a major impact on the likelihood of fault

detection, and that developers should monitor and inspect key bottleneck points

in program execution.

These studies show that the choice and formulation of test oracles is impor-

tant and makes a difference in test suite effectiveness. Our study advances this

knowledge by providing empirical evidence showing why test oracles are impor-

tant. We have identified specific fault types that create internal state problems,

and provide evidence that test suites evaluated with coverage metrics alone did

not detect them at the expected rate. Researchers and developers can improve

their test suites by adding or improving test oracles in situations where bugs,

similar to the ones shown in our study, are possible. Furthermore, researchers

can use the evidence found in our study as motivation for developing test eval-

uation methods that consider code coverage and test oracles together, and their

dual influence on test suite effectiveness.

6. Conclusions and Future Work

Code coverage is widely used as a method for evaluating the effectiveness

of test suites. However, research has shown achieving high code coverage is

not always a good indicator of fault-finding capability. Many past studies in-

vestigating the correlation between code coverage and fault detection have had

33



inconsistent findings, only sometimes showing a correlation between the two. In

this work, we investigated one possible source of the inconsistencies observed:

fault type. Specifically, we investigated how effective test suites achieving high

code coverage were at detecting 45 different types of faults. Our results show

that the effectiveness of finding the different faults varied greatly, and certain

types of faults were missed at a much higher rate than others. Specifically,

three of the four fault types identified as outliers were fault types that could

corrupt internal state by using an incorrect value in some way. Based on this re-

sult, we suggest that test oracles should more thoroughly inspect internal state

and boundary values, that developers carefully consider which variables are in-

spected using the test oracle, and that the dual influence of code coverage and

test oracle be considered when evaluating test suites.

There is still much work to be done on this particular problem. Identifying

the types of faults that are missed most frequently is only the first step. The

information gained from this study can be used to propose improvements to test

suites that would make them more capable of finding these faults. Also, although

our study identifies one factor that is affecting the ability of test suites to find

faults, there could be other factors as well—particularly centered around the

role and formulation of test oracles. Additionally, other methods of evaluating

test suites could be proposed and studied to identify whether they are a better

indicator of a test suites’ ability to find faults.

7. Acknowledgements

This work has been partially supported by the Office of Sponsored Awards

and Research Support (SARS) from the University of South Carolina Upstate.

References

[1] M. Pezze, M. Young, Software Test and Analysis: Process, Principles, and

Techniques, John Wiley and Sons, 2006.

34



[2] A. Groce, M. A. Alipour, R. Gopinath, Coverage and its discontents, in:

Proceedings of the 2014 ACM International Symposium on New Ideas,

New Paradigms, and Reflections on Programming & Software, Onward!’14,

ACM, New York, NY, USA, 2014, pp. 255–268. doi:10.1145/2661136.

2661157.

URL http://doi.acm.org/10.1145/2661136.2661157

[3] RTCA/DO-178C, Software considerations in airborne systems and equip-

ment certification.

[4] M. Heimdahl, M. Whalen, A. Rajan, M. Staats, On MC/DC and imple-

mentation structure: An empirical study, in: Digital Avionics Systems

Conference (DASC), 2008, pp. 5–B.

[5] S. Artzi, J. Dolby, S. H. Jensen, A. Moller, F. Tip, A framework for au-

tomated testing of javascript web applications, in: Software Engineering

(ICSE), 2011 33rd International Conference on, IEEE, 2011, pp. 571–580.

[6] Q. Yang, J. J. Li, D. M. Weiss, A survey of coverage-based testing tools,

The Computer Journal 52 (5) (2007) 589–597.

[7] R. Gopinath, C. Jensen, A. Groce, Code coverage for suite evaluation by

developers, in: Proceedings of the 36th International Conference on Soft-

ware Engineering, 2014, pp. 72–82.

[8] A. S. Namin, J. H. Andrews, The influence of size and coverage on test suite

effectiveness, in: Proceedings of the eighteenth International Symposium

on Software Testing and Analysis, 2009, pp. 57–68.

[9] G. Gay, The fitness function for the job: Search-based generation of test

suites that detect real faults, in: Proceedings of the International Confer-

ence on Software Testing, ICST 2017, IEEE, 2017.

[10] G. Gay, M. Staats, M. Whalen, M. Heimdahl, The risks of coverage-directed

test case generation, Software Engineering, IEEE Transactions on PP (99).

doi:10.1109/TSE.2015.2421011.

35

http://doi.acm.org/10.1145/2661136.2661157
http://dx.doi.org/10.1145/2661136.2661157
http://dx.doi.org/10.1145/2661136.2661157
http://doi.acm.org/10.1145/2661136.2661157
http://dx.doi.org/10.1109/TSE.2015.2421011


[11] L. Inozemtseva, R. Holmes, Coverage is not strongly correlated with test

suite effectiveness, in: Proceedings of the 36th International Conference on

Software Engineering, 2014, pp. 435–445.

[12] G. Gay, A. Rajan, M. Staats, M. Whalen, M. P. E. Heimdahl, The effect of

program and model structure on the effectiveness of mc/dc test adequacy

coverage, ACM Trans. Softw. Eng. Methodol. 25 (3) (2016) 25:1–25:34.

doi:10.1145/2934672.

URL http://doi.acm.org/10.1145/2934672

[13] Y. Zhang, A. Mesbah, Assertions are strongly correlated with test suite ef-

fectiveness, in: Proceedings of the 2015 10th Joint Meeting on Foundations

of Software Engineering, 2015, pp. 214–224.

[14] A. Schwartz, M. Hetzel, The impact of fault type on the relationship be-

tween code coverage and fault detection, in: Proceedings of the 11th In-

ternational Workshop on Automation of Software Test, ACM, 2016, pp.

29–35.

[15] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp,

M. Harman, M. J. Harrold, P. Mcminn, et al., An orchestrated survey

of methodologies for automated software test case generation, Journal of

Systems and Software 86 (8) (2013) 1978–2001.

[16] C. S. Jensen, M. R. Prasad, A. Møller, Automated testing with targeted

event sequence generation, in: Proceedings of the 2013 International Sym-

posium on Software Testing and Analysis, ACM, 2013, pp. 67–77.

[17] B. N. Nguyen, B. Robbins, I. Banerjee, A. Memon, Guitar: an innova-

tive tool for automated testing of gui-driven software, Automated Software

Engineering 21 (1) (2014) 65–105.

[18] G. Fraser, A. Arcuri, Evosuite: automatic test suite generation for object-

oriented software, in: Proceedings of the 19th ACM SIGSOFT symposium

36

http://doi.acm.org/10.1145/2934672
http://doi.acm.org/10.1145/2934672
http://doi.acm.org/10.1145/2934672
http://dx.doi.org/10.1145/2934672
http://doi.acm.org/10.1145/2934672


and the 13th European conference on Foundations of software engineering,

ACM, 2011, pp. 416–419.

[19] I. Ghosh, N. Shafiei, G. Li, W.-F. Chiang, JST: An automatic test gener-

ation tool for industrial java applications with strings, in: Proceedings of

the International Conference on Software Engineering, 2013, pp. 992–1001.

[20] P. D. Marinescu, C. Cadar, Katch: high-coverage testing of software

patches, in: Proceedings of the 2013 9th Joint Meeting on Foundations

of Software Engineering, ACM, 2013, pp. 235–245.

[21] D. Amalfitano, A. R. Fasolino, P. Tramontana, S. De Carmine, A. M.

Memon, Using gui ripping for automated testing of android applications,

in: Proceedings of the 27th IEEE/ACM International Conference on Au-

tomated Software Engineering, ACM, 2012, pp. 258–261.

[22] F. Gross, G. Fraser, A. Zeller, Search-based system testing: high coverage,

no false alarms, in: Proceedings of the 2012 International Symposium on

Software Testing and Analysis, ACM, 2012, pp. 67–77.

[23] K. Inkumsah, T. Xie, Improving structural testing of object-oriented pro-

grams via integrating evolutionary testing and symbolic execution, in: 23rd

International Conference on Automated Software Engineering, 2008, pp.

297–306.

[24] P. G. Frankl, S. N. Weiss, An experimental comparison of the effective-

ness of branch testing and data flow testing, Software Engineering, IEEE

Transactions on 19 (8) (1993) 774–787.

[25] X. Cai, M. R. Lyu, The effect of code coverage on fault detection under dif-

ferent testing profiles, ACM SIGSOFT Software Engineering Notes 30 (4)

(2005) 1–7.

[26] F. Del Frate, P. Garg, A. P. Mathur, A. Pasquini, On the correlation be-

tween code coverage and software reliability, in: Sixth International Sym-

posium on Software Reliability Engineering, 1995, pp. 124–132.

37



[27] M. Gligoric, A. Groce, C. Zhang, R. Sharma, M. A. Alipour, D. Marinov,

Comparing non-adequate test suites using coverage criteria, in: Proceedings

of the International Symposium on Software Testing and Analysis, 2013,

pp. 302–313.

[28] P. S. Kochhar, F. Thung, D. Lo, Code coverage and test suite effectiveness:

Empirical study with real bugs in large systems, in: 22nd International

Conference on Software Analysis, Evolution, and Reengineering, 2015, pp.

560–564.

[29] M. Staats, G. Gay, M. Whalen, M. Heimdahl, On the danger of coverage

directed test case generation, in: Fundamental Approaches to Software

Engineering, 2012, pp. 409–424.

[30] A. Perez, R. Abreu, A. van Deursen, A test-suite diagnosability metric for

spectrum-based fault localization approaches, in: Proceedings of the 39th

International Conference on Software Engineering, IEEE Press, 2017, pp.

654–664.

[31] G. Fraser, M. Staats, P. McMinn, A. Arcuri, F. Padberg, Does automated

unit test generation really help software testers? a controlled empirical

study, ACM Trans. Softw. Eng. Methodol. 24 (4) (2015) 23:1–23:49. doi:

10.1145/2699688.

URL http://doi.acm.org/10.1145/2699688

[32] G. Fraser, M. Staats, P. McMinn, A. Arcuri, F. Padberg, Does automated

white-box test generation really help software testers?, in: Proceedings

of the 2013 International Symposium on Software Testing and Analysis,

ISSTA, ACM, New York, NY, USA, 2013, pp. 291–301. doi:10.1145/

2483760.2483774.

URL http://doi.acm.org/10.1145/2483760.2483774

[33] M. M. Almasi, H. Hemmati, G. Fraser, A. Arcuri, J. Benefelds, An indus-

trial evaluation of unit test generation: Finding real faults in a financial

38

http://doi.acm.org/10.1145/2699688
http://doi.acm.org/10.1145/2699688
http://doi.acm.org/10.1145/2699688
http://dx.doi.org/10.1145/2699688
http://dx.doi.org/10.1145/2699688
http://doi.acm.org/10.1145/2699688
http://doi.acm.org/10.1145/2483760.2483774
http://doi.acm.org/10.1145/2483760.2483774
http://dx.doi.org/10.1145/2483760.2483774
http://dx.doi.org/10.1145/2483760.2483774
http://doi.acm.org/10.1145/2483760.2483774


application, in: Proceedings of the 39th IEEE/ACM International Confer-

ence on Software Engineering (ICSE)—Software Engineering in Practice

Track (SEIP), ICSE 2017, ACM, New York, NY, USA, 2017.

[34] P. G. Frankl, O. Iakounenko, Further empirical studies of test effectiveness,

ACM SIGSOFT Software Engineering Notes 23 (6) (1998) 153–162.

[35] P. G. Frankl, S. N. Weiss, C. Hu, All-uses vs mutation testing: an experi-

mental comparison of effectiveness, Journal of Systems and Software 38 (3)

(1997) 235–253.

[36] M. Hutchins, H. Foster, T. Goradia, T. Ostrand, Experiments of the effec-

tiveness of dataflow-and controlflow-based test adequacy criteria, in: Pro-

ceedings of the 16th International Conference on Software Engineering,

1994, pp. 191–200.

[37] Y.-S. Ma, Y.-R. Kwon, J. Offutt, Inter-class mutation operators for java, in:

Proceedings of the 13th International Symposium on Software Reliability

Engineering, 2002, pp. 352–363.

[38] J. Offutt, Y.-S. Ma, Y.-R. Kwon, The class-level mutants of mujava, in:

Proceedings of the 2006 International Workshop on Automation of Software

Test, 2006, pp. 78–84.

[39] V. Debroy, W. E. Wong, Insights on fault interference for programs with

multiple bugs, in: Software Reliability Engineering, 2009. ISSRE’09. 20th

International Symposium on, IEEE, 2009, pp. 165–174.

[40] N. DiGiuseppe, J. A. Jones, Fault interaction and its repercussions, in:

Software Maintenance (ICSM), 2011 27th IEEE International Conference

on, IEEE, 2011, pp. 3–12.

[41] J. H. Andrews, L. C. Briand, Y. Labiche, Is mutation an appropriate tool

for testing experiments?, in: Proceedings. 27th International Conference

on Software Engineering, 2005, pp. 402–411.

39



[42] R. Just, D. Jalali, L. Inozemtseva, M. D. Ernst, R. Holmes, G. Fraser, Are

mutants a valid substitute for real faults in software testing, in: 22nd In-

ternational Symposium on the Foundations of Software Engineering, 2014,

pp. 654–665.

[43] R. Just, The major mutation framework: Efficient and scalable mutation

analysis for java, in: Proceedings of the 2014 International Symposium on

Software Testing and Analysis, 2014, pp. 433–436.

[44] Y.-S. Ma, J. Offutt, Y.-R. Kwon, MuJava: a mutation system for java, in:

Proceedings of the 28th International Conference on Software Engineering,

2006, pp. 827–830.

[45] J. Offutt, Y.-S. Ma, Description of mujava’s method-level mutation oper-

ators, in: Electronics and Telecommunications Research Institute, Korea,

Tech. Rep, 2005.

[46] G. Gay, M. Staats, M. Whalen, M. Heimdahl, Automated oracle data selec-

tion support, Software Engineering, IEEE Transactions on PP (99) (2015)

1–1. doi:10.1109/TSE.2015.2436920.

[47] J. Chen, Y. Bai, D. Hao, L. Zhang, L. Zhang, B. Xie, How do assertions

impact coverage-based test-suite reduction?, in: Software Testing, Verifica-

tion and Validation (ICST), 2017 IEEE International Conference on, IEEE,

2017, pp. 418–423.

40

http://dx.doi.org/10.1109/TSE.2015.2436920

	Introduction
	Background and Related Work
	Study
	Selection of Object Programs
	Mutant Creation
	Execute Test Suites Over Mutants
	Collect and Analyze Data
	Threats to Validity
	Construct Validity:
	Internal Validity:
	External Validity:


	Data and Analysis
	Traditional Mutants
	Class-level Mutants
	Overall results

	Discussion
	Arithmetic Operator Replacement (Binary) (AORB)
	 Relational Operator Replacement (ROR) 
	Type Cast Operator Insertion (PCI)
	Accessor Method Change (EAM)
	Arithmetic Operator Insertion (Shortcut) (AOIS)
	Arithmetic Operator Deletion (Unary) (AODU)
	General Trends
	Impact of the Study

	Conclusions and Future Work
	Acknowledgements

